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Abstract 

The Effects of Resveratrol on Oxidative Stress and Muscle Atrophy 

Janna Renee Jackson 

 

Increases in oxidative stress and apoptosis are associated with skeletal muscle atrophy 
caused by  prolonged periods o f muscle disuse and also as  p art o f the normal ag ing 
process. The loss of muscle size and strength with age is known as sarcopenia and has 
detrimental implications to the quality of life for elderly individuals. Although the causes 
of sarcopenia and disuse-mediated atrophy are largely unknown, an increased oxidant 
load has the potential to negatively impact both muscle mass and function by directly 
causing oxidative damage to tissue constituents and also via the initiation of the intrinsic 
mitochondrial apop totic pat hway. Due t o i ts m ulti-nucleated cellular s tructure, s keletal 
muscle is an exception with regard to the linear relationship between apoptosis and cell 
death. Apoptosis in skeletal muscle results in the potential loss of both myonuclei and/or 
muscle precursor cells ( i.e. satellite cells). This i s o f particular s ignificance i n skeletal 
muscle g iven that skeletal muscle i s a pos t-mitotic t issue and thus i t’s only means of 
regeneration r ests w ith its a bility t o ac tivate an d pr opagate s atellite c ells. T herefore, 
oxidative stress may potentially contribute to the process of muscle atrophy via a dual -
fold m echanism, by both di rectly ox idizing t he nuc leic ac ids, l ipids and pr oteins t hat 
make u p t he muscle t issue and by  creating a m ore f avorable ap optotic environment 
leading to an eventual loss of myonuclei. 

Resveratrol (3,5,4,trihydroxystilbene) i s a n aturally occurring polyphenol found in over 
seventy plant species that has been shown to have anti-oxidant, anti-apoptotic and anti-
aging pr operties. R esveratrols’ capacity t o en hance t he e ndogenous a nti-oxidant 
system, upr egulate ant i-apoptotic pr oteins and i mprove m itochondrial function, 
presumably t hrough the activation o f t he N AD+ dependent d eacetylase S irtuin1, 
suggests that supplementation with resveratrol may potentially protect skeletal muscle 
from t he d etrimental ef fects of  increases i n oxidative s tress and t he s ubsequent 
increase in apoptotic signaling that are present in many atrophic conditions. Therefore, 
the major g oals o f this di ssertation ar e t o further u nderstand t he i nterplay bet ween 
oxidative stress and skeletal muscle atrophy and to evaluate the efficacy of resveratrol 
as a counter measure to both mitochondrial-induced oxidative stress and apoptosis. 

The first s tudy used hindlimb suspension (HLS) as  a m odel o f disuse at rophy as  i t i s 
known to el icit muscle atrophy, oxidative stress and apoptosis in skeletal muscle. The 
aim o f t he investigation was to analyze the capacity o f resveratrol administration at a  
moderate dose o f 12.5mg/kg/day for 21 days to at tenuate ox idative s tress, apoptosis 
and muscle f orce l oss f ollowing 14  days of  H LS i n y oung and aged r ats. T he s tudy 
yielded m ixed r esults. Resveratrol administration effectively r educed oxidative s tress 
and s ubsequently oxidative dam age in m uscles f rom ag ed a nimals. F urthermore, 
resveratrol adm inistration at tenuated t he r elative l oss of  m uscle mass as  a r atio o f 
animal body  w eight i n g astrocnemius muscles f rom ag ed ani mals; how ever, des pite 
reductions in apoptotic signaling in aged muscles, resveratrol administration was unable 
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to mitigate a poptosis as  measured by D NA fragmentation. M oreover, r esveratrol 
administration had no protective effect on gastrocnemius muscles from young animals 
with regard to oxidative or apoptotic indices. Based on these results resveratrol has the 
potential t o b e a n e ffective therapeutic agent t o t reat m uscle functional d ecrements 
associated w ith di suse i n aged i ndividuals, v ia improving t he redox s tatus associated 
with these conditions. 

The second hal f o f the dissertation f ocuses on the c apacity o f l ong-term dietary 
supplementation with resveratrol to protect against aging-induced oxidative stress and 
to enhance mitochondrial signaling, and t hus stem t he pr ogression o f s arcopenia i n 
aged skeletal m uscle. In t his s tudy m iddle-aged ( 18mo) C57BL/6 m ice were 
supplemented w ith a diet c ontaining . 05% trans-resveratrol f or 1 0 m onths until they 
reached senescence (28mo). Gastrocnemius, pl antaris an d v astus l ateralis muscles 
from s upplemented animals w ere c ompared for an ti-oxidant enzyme content and 
activities, oxidant load, oxidative damage, mitochondrial integrity and mass, as well as 
muscle function indices with muscles from young and middle-aged animals receiving a 
control di et. Resveratrol specifically upr egulated t he c apacity o f the m itochondrial 
isoform of s uperoxide di smutase ( MnSOD) and c oncomitantly dec reased hy drogen 
peroxide concentrations. This was paralleled by reductions in lipid peroxidation, but not 
protein oxidation in muscles from supplemented animals. Despite reductions in oxidant 
load and lipid peroxidation resveratrol, supplementation was unable to confer protection 
against s arcopenia. Furthermore, plantaris m uscles from s upplemented ag ed animals 
did not show enhanced resistance to muscle fatigue, nor an increase in maximal force 
production. 

Taken as a whole these results suggest that resveratrol may be most effective when 
used as a pharmacological pre-conditioner to help confer resistance to oxidative 
damage under perturbations that are known to increase oxidative stress. Specifically, 
resveratrol may be an effective therapeutic agent to improve the redox status of aged 
skeletal muscle and therefore allow for improved adaptation and recovery following 
chronic illness and/or injuries during which the capacity of the endogenous antioxidant 
system may be overwhelmed in aged individuals. Gaining clearer insight into the 
molecular signaling pathways involved in aging and disuse muscle atrophy is 
paramount in developing nutritional and/or pharmacological interventions to minimize 
protein loss and attenuate the functional decrements associated with atrophic 
conditions. 
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Specific Aims 

With advanced age there is a progressive loss of skeletal muscle mass, termed 

sarcopenia (32). The frailty and loss of function associated with sarcopenia puts the 

elderly at an increased risk of falls and subsequent injury, resulting in a marked 

decrease of their quality of life (6; 17). Furthermore, sarcopenia represents a 

tremendous financial burden; the estimated direct healthcare costs attributable to 

sarcopenia in the United States in the year 2000 was $18.5 billion (18). The causative 

factors of sarcopenia are multi-factorial and include a progressive denervation of muscle 

fibers (11), an altered hormonal milieu (35), and an increase in protein degradation and 

a concomitant decrease in protein synthesis, resulting in a net loss of contractile 

proteins (19; 29). Moreover, sarcopenia can be compounded by reductions in dietary 

intake (31) and activity levels (10) often associated with advanced age.  

Both advanced age and disuse are associated with atrophy and an increased 

production of reactive oxygen species (ROS) in skeletal muscle (24; 25; 28), leading to 

an augmented oxidant-load.  When an increase in pro-oxidant production exceeds an 

organisms’ capacity to buffer them, via a complex coordination of the endogenous 

antioxidant defense system, oxidative stress occurs. Oxidative stress, left unchecked 

over time leads to the oxidation, and thus damage, of cellular macromolecules, 

including lipids (26), nucleic acids (15) and proteins (2; 9; 16). The progressive oxidative 

assault on cellular organelles is believed to be a main contributor to the aging process 

(13) and is thought to be responsible for many of the pathologies associated with aging, 

including genomic instability, mitochondrial dysfunction and chronic inflammation (13; 

14).  
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Oxidative stress is believed to be a common underlying mechanism potentiating 

many of the factors leading to muscle loss with aging (12; 28), of particular interest is 

the redox sensitive apoptotic pathway (37). Oxidative stress is upstream of apoptotic 

signaling in muscle cells (34) and results in the initiation of the intrinsic mitochondrial 

apoptotic pathway.  Due to its multi-nucleated cellular structure, skeletal muscle is an 

exception with regard to the linear relationship between programmed cell death and 

apoptotic signaling. Instead, apoptosis in skeletal muscle results in a loss of myonuclei 

and consequent fiber atrophy (1). 

Antioxidant supplementation has been shown to be an effective counter measure 

to combat oxidative stress in a wide variety of tissue types and conditions (7; 28) and it 

is speculated that this might be an approach to reduce muscle wasting associated with 

disuse (33) and aging (7). Dietary supplementation with the polyphenol, resveratrol, 

exerts beneficial effects not only through its’ ability to directly scavenge free radicals (3; 

5), but also by its’ capacity to modulate the signal transduction and gene expression of 

several pathways regulating cellular proliferation (30), mitochondrial biogenesis (20; 36), 

metabolism (12; 13; 28), and survival. The efficacy of acute resveratrol administration 

has been established for several pathological conditions (4; 20; 27); however, the use of 

chronic resveratrol supplementation as a counter-measure to combat oxidative stress-

induced muscle loss and sarcopenia has not been established.  

The long-term goal of this study is to characterize the mechanisms responsible for the 

progression and pathogenesis of sarcopenia and disuse-induced muscle loss and to 

use this information to develop strategies for the prevention and treatment of muscle 

loss with aging. The main objectives of the project were: (1) to characterize the 
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endogenous antioxidant defense system in young and old skeletal muscles exposed to 

hindlimb suspension (HLS); (2) to determine the ability of resveratrol to reduce oxidative 

stress associated with both aging and skeletal muscle disuse via an enhancement of 

the endogenous antioxidant defense system; (3) to evaluate the potential of long-term 

resveratrol supplementation to attenuate the detrimental effects of aging in skeletal 

muscle via reductions in pro-oxidant production by enhancing cellular mitochondrial 

content, integrity and function; (4) to characterize the relationship between oxidative 

stress and myonuclear apoptosis contributing to skeletal muscle atrophy. 

The central hypothesis of the project is that enhancing the muscle’s endogenous 

antioxidant defense system and promoting mitochondrial biogenesis will reduce 

oxidative stress, consequently reducing muscle cell apoptosis. Attenuation of 

myonuclear apoptosis will result in a reduction of skeletal muscle atrophy associated 

with both disuse and advanced age. Our central hypothesis is based on data from our 

laboratory and published data from other laboratories, suggesting that sarcopenia and 

muscle atrophy occurs concurrently with a reduction in mitochondria content and 

increases oxidative stress (12; 22; 23). Resveratrol may act to both reduce oxidative 

stress and improve mitochondria biogenesis (4; 8; 20; 21). The rationale for this project 

is that a delineation of the potential importance of resveratrol to reduce oxidative stress 

and mitochondrial dysfunction potentially leading to attenuation of apoptosis and the 

improved regulation of muscle mass during aging would potentially provide 

opportunities for intervention, or prevention, of the development of sarcopenia in aged 

individuals. 

 



www.manaraa.com

xv 
 

Specific Aim 1:  To evaluate the efficacy of resveratrol administration to 

ameliorate muscle atrophy associated with muscle disuse by reducing oxidative 

stress and apoptotic signaling.  

To address aim 1, indices of oxidative stress and the content of mitochondria-

associated apoptotic proteins were assessed in the gastrocnemius muscles of young 

adult and old rats subjected to resveratrol treatment during acute muscle disuse 

induced by HLS. Additionally, muscle function was assessed, pre and post-HLS, to 

determine the efficacy of resveratrol to preserve muscle mass and function following 

disuse.  

• Hypothesis 1.1:  Hindlimb suspension will increase oxidative stress in 

gastrocnemius muscles; Resveratrol administration will improve the redox 

status of these muscles by increasing their endogenous antioxidant defense 

systems.  

• Hypothesis 1.2: The gastrocnemius muscles from old HLS animals will 

exhibit greater increases in oxidative stress than gastrocnemius muscles from 

young HLS animals; Resveratrol administration will attenuate this increase. 

• Hypothesis 1.3:  Hindlimb suspension will increase apoptotic signaling in 

gastrocnemius muscles from both young and old animals; Resveratrol 

administration will reduce apoptotic signaling in these muscles.  

• Hypothesis 1.4:  Resveratrol administration will improve muscle function in 

the gastrocnemius muscles from HLS animals by reducing oxidative stress 

and subsequently reducing myonuclear apoptosis-induced atrophy, leading to 

maintenance of muscle force following HLS. 
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Specific Aim 2:  To determine the ability of long-term resveratrol supplementation 

to counteract the detrimental effects of aging on skeletal muscle mass, function, 

and oxidant load. 

To address aim 2 select antioxidant enzyme capacities, oxidative stress indices, 

mitochondrial-associated signaling proteins and muscle mass and function (force and 

fatigability) were evaluated in the hindlimb muscles of old mice subjected to long-term 

resveratrol supplementation. The dietary supplementation with 0.05% trans-resveratrol 

began at middle-age (18 months old) mice and continued through old age (28 months 

old). Sirtuin1 (Sirt1) were measured because it is potentially activated by resveratrol. 

Therefore, Sirt1 may have a key role in regulating mitochondrial-associated changes in 

response to long-term supplementation. 

• Hypothesis 2.1:   Long-term resveratrol supplementation will reduce oxidative 

stress and consequently oxidative damage in aged skeletal muscle, there by 

slowing the progression of sarcopenia by helping to maintain the muscle mass of 

old mice. 

• Hypothesis 2.2:   Long-term resveratrol supplementation will prevent the age-

associated decline in force production in hindlimb muscles of old mice by 

providing a more favorable muscle redox environment. 

• Hypothesis 2.3:   Long-term resveratrol supplementation will activate Sirt1 and 

in turn will promote mitochondrial biogenesis and improve mitochondrial 

membrane integrity, thus improving resistance to fatigue in skeletal muscles of 

old mice. 
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Chapter 1: Background and Significance 

 

1.1: Sarcopenia; An overview of the consequences and underlying mechanisms: 

 

 Loss of muscle strength and muscle wasting are characteristic of aging and are 

caused by both a loss of muscle fibers and atrophy of the remaining fibers (33; 113). 

Age associated loss of muscle mass and function is termed sarcopenia (113). 

Sarcopenia is a ubiquitous problem facing the elderly and is characterized by marked 

frailty, impaired mobility and an increased risk of injury (58; 113). The combination of 

these factors leads to a severe reduction in the quality of life for older individuals and 

presents an ever increasing burden on our already taxed healthcare system. In the year 

2000, it was estimated that a 10% reduction in the prevalence of sarcopenia would 

result in savings of $1.1 billion per year in U.S. healthcare costs (58). The percentage of 

the U.S population in their seventh and eighth decade of life is increasing at a faster 

rate than at any other time in U.S. history (1), underscoring the importance of finding 

effective countermeasures to combat age-related pathologies, including sarcopenia. 

Although it is known that sarcopenia results in ~40% reduction in skeletal muscle mass 

by the age of 80 (77), the mechanisms underlying this severe muscle atrophy have not 

been completely elucidated. However, age-related increases in pro-oxidant production 

and the resultant oxidative stress associated with this increase are thought to be 

important mediators of the mechanisms triggering sarcopenia and the aging process as 

a whole (45). One pathway known to be activated by oxidative stress (137) and also 

implicated in the progression of sarcopenia (6) is the programmed cell death, or 
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apoptotic pathway. Apoptosis results in cell death for mono-nucleated cells and a loss of 

nuclei in multi-nucleated cells, such as skeletal muscle (6). Since the number of nuclei 

within a muscle fiber is proportional to the size of the fiber, the loss of myonuclei is a 

key factor in skeletal muscle atrophy caused by a wide variety of muscle wasting 

conditions (5; 6), including denervation (2; 126), disuse (38; 128), immobilization (142) 

and advanced age (6). Furthermore, aged individuals must contend with the additive 

effect of the basal incidence of oxidative stress and apoptotic signaling that are inherent 

with advanced age, compounded by the fact that aging potentiates apoptosis during 

disuse, resulting in an enhanced atrophic environment (116; 130). 

 

1.2 Oxidative stress and the process of aging:  

 

Aging is an inevitable process that results in detrimental structural and functional 

changes starting at the subcellular level and eventually affecting the integrity and 

function of tissues, organs and whole systems within animals. Although the pathologies 

associated with aging are well documented (84), the exact mechanisms underlying 

these pathologies are a constant source of debate. One theory that has gained 

popularity over the past two decades, is “the mitochondrial theory of aging”, originally 

presented by Dr. Denham Harmon in 1956. The theory is based on the idea that with 

advanced age there is an increase in free radical production from mitochondria due to 

reductions in the organelles integrity and function and that these free radicals oxidize 

and subsequently damage biomolecules (45; 46; 124). Thus, the accumulation of 

irreversible damage to lipids (94), proteins (52) and nucleic acids (49) drives the aging 
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process. The accrual of damage induced by oxidative stress can ultimately lead to cell 

death in various tissues and cell types, including muscle stem cells (39; 62; 62).  

Furthermore, oxidative stress is positively correlated with skeletal muscle atrophy 

induced by aging (39), denervation (90), disuse and immobilization (69; 71; 100). These 

atrophic stimuli are associated with concomitant increases in lipid peroxidation , 

glutathione oxidation, protein carbonyl formation (133), free iron content (50), xanthine 

oxidase levels (50) and nucleic acid damage (50; 133), which can lead to genomic 

instability and altered gene expression. Compounding the effect of increased pro-

oxidant production and the associated macromolecule damage seen with advanced age 

(39)  and muscle disuse (129) are the inherent alterations in the endogenous 

antioxidant defense systems that occur with aging (95; 103). Although there is an 

incongruence in the literature as to whether the endogenous antioxidant system activity  

increases or decreases with aging, there is an overwhelming amount of literature 

suggesting that despite increases in enzymatic activity and/or content of the antioxidant 

enzymes, the antioxidant defense system in aged individuals can become more easily 

overwhelmed in situations that potentiate oxidant production leading to oxidative stress 

and consequent damage (94; 116; 129). 

 

1.3 The endogenous anti-oxidant system: 

 

 Antioxidant enzymes and compounds are present in organisms as simple as 

single-celled yeasts (57), to the most complex of organisms, humans (95). Their 

ubiquitous presence underscores the importance of protecting oneself from the harmful 
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effects of pro-oxidants. The endogenous anti-oxidant system is composed of a complex 

coordination of enzymes and small molecules, whose sole responsibilities are to keep 

the levels of pro-oxidants in check. Antioxidant enzymes function by converting reactive, 

and thus toxic, pro-oxidants into less reactive forms, in a series of enzymatic reactions 

resulting in more inert biological molecules. An example of this type of chain reaction is 

exemplified by the coordination of two enzymes, superoxide dismutase (SOD) and 

catalase in the stepwise removal of the highly reactive superoxide anion (O2
•). The 

superoxide anion is a harmful free radical that is generated in the mitochondria when 

electrons escape the electron transport chain  and react with molecular oxygen, to form 

O2
•- (14).  The protonated form (HO2

•-) can initiate lipid peroxidation (44; 79) and lead to 

the formation of radical species such as peroxynitrite (ONOO-) and the hydroxyl radical 

(OH•-) (44). Therefore, limiting the production and enhancing the removal of O2
•- via 

SOD is a key aspect in limiting the potential downstream oxidation of biomolecules (87).  

Superoxide dismutase has several isoforms that all catalyze the same reaction in 

different subcellular locations; the dismutation of O2
• - into the less reactive pro-oxidant 

hydrogen peroxide (H2O2) (11; 87).  Catalase,(located in both the cytosol and in micro-

peroxisomes in skeletal muscle) (20; 108), then further converts H2O2  into O2 and 

water. Alternatively, H2O2 can be reduced by other peroxidases, such as glutathione 

peroxidase, a very abundant enzyme found in the cytosol.  The glutathione redox cycle 

reduces H2O2  by the continual interplay between glutathione reductase and glutathione 

peroxidase. Glutathione peroxidase catalyzes the reaction in which glutathione donates 

an electron to reduce H2O2 and glutathione reductase regenerates glutathione via a 

NADH- dependent reaction, thus this cycle is self-sustaining and extremely beneficial in 
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the prevention of oxidative stress (11). Additionally, there are other non-enzymatic 

molecules present in biological systems that function as anti-oxidants, such as vitamin 

C and vitamin E (102). These small molecules exert their antioxidant capabilities by 

acting as electrons donors, and thus effectively reducing pro-oxidants before they can 

cause oxidative damage. They can also play a role in the repair of oxidized 

biomolecules. (102). Overall, the endogenous antioxidant defenses system is very 

effective in protecting cellular components against oxidation; however, under 

extenuating circumstances, in which pro-oxidant production increases dramatically, or is 

present for prolonged periods of time, the system can become overwhelmed, leading to 

oxidative stress and the associated downstream effects (11). 

 

1.4 Mitochondrial dysfunction; A source of reactive oxygen species with aging: 

 

Age-related mitochondrial alterations underlie a wide variety of diseases such as 

diabetes (81), neurodegeneration (122) and sarcopenia (17). The premise behind this 

relationship is that with advanced age there are more dysfunctional mitochondria 

present within a cell (80). These defective mitochondria contain “leaky” electron 

transport chains and thus more pro-oxidants are produced leading to oxidative stress 

(17; 49). The process is cyclic, with more mitochondrial uncoupling, there are more pro-

oxidants present to further damage vulnerable membrane phospholipids (49; 94) and 

perhaps more importantly oxidatively damage mtDNA, which unlike nuclear DNA, is 

without the protection of chromatin condensation and histones (26). Thus, damaged 

mtDNA can lead to a further decrease in the quality and quantity of mitochondria within 
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a cell, potentiating an oxidizing environment. Although mitochondria are not the sole 

source of ROS within a cell, they are routinely viewed as the principle site of superoxide 

generation, which is the primary source of damaging ROS within muscle cells (55; 56). 

 

 

 

Figure 1.1- Mitochondria mediated ROS generation. 

 

Mitochondrial derived superoxide generation increases with advanced age (91). 

Additionally, mitochondria have recently been shown to be the primary source of ROS 

within muscle precursor cells (143) (146). The potential for ROS to damage satellite 

cells is of particular concern in a post-mitotic tissue like skeletal muscle, as satellite cells 
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represent the only  mechanism for muscle repair, adaptation and regeneration; thus the 

only mechanism available to combat sarcopenia (114; 123). Further evidence linking 

mitochondrial dysfunction and skeletal muscle atrophy is the negative association 

between muscle fiber size and the content of dysfunctional mitochondria (48; 88). 

 

1.5 Oxidative stress and muscle atrophy: 

 

 Oxidative stress is associated with skeletal muscle atrophy caused by a variety of 

underlying conditions (89; 136). During extended periods of oxidative stress there is an 

eventual loss of cellular integrity mediated by the oxidation of lipids (94; 118), proteins 

(29; 89) and nucleic acids (50), promoting a cycle of increased pro-oxidant production, 

and thus increased oxidative damage, which limits both the cellular repair system and 

the enzymatic antioxidant defense system (39). The exact mechanisms by which 

oxidative stress acts as a potentiator of muscle atrophy are largely unknown, however, 

several relationships between oxidative stress and atrophy have been postulated (39; 

101). Specifically, skeletal muscle atrophy is characterized by an overall reduction in 

protein synthesis and/or a concomitant increase in protein catabolism resulting in a net 

protein loss (10; 63). Oxidized proteins are preferentially targeted by the 20S 

proteasome (60) and are subsequently degraded via proteolysis (60).  However, 

severely oxidized proteins are poorly recognized by the proteasome system and thus 

can aggregate and lead to an accumulation of dysfunctional proteins (42; 95; 132). 

Additionally, several  key signaling pathways responsible for regulating muscle 



www.manaraa.com

8 
 

precursor cell proliferation, differentiation and survival are redox sensitive, including the 

forkhead family of transcription factors (FOXOs) (141; 145) and nuclear factor-ĸB 

(NFĸB) (76; 115; 136). Therefore, in an oxidizing environment these proteins have the 

potential to promote cell cycle arrest and decrease the proliferation of satellite cells, 

potentiating muscle atrophy. Furthermore, key mitogen-activated kinases (MAPKs), 

involved in the cellular stress response, are positively regulated by oxidative stress (31; 

137) and when activated, act as upstream activators of the apoptotic pathway (118), 

which is associated with skeletal muscle atrophy. Clearly, the potential is there for 

oxidative stress to negatively impact the proliferation and differentiation capacity of 

satellite cells, the muscles only source of regenerative potential (24; 76; 140), has it 

therefore could influence muscle size and function. 

 

1.6 Oxidative stress and muscle function: 

 

Given that oxidative stress is positively correlated with muscle atrophy (32; 39; 

129), it is likely negatively associated with muscle force production (21; 23; 53; 107). 

Furthermore, increased pro-oxidant production and/or an attenuated capacity to buffer 

these pro-oxidants, may result in reductions in muscle function beyond the linear 

relationship between cross-sectional area and muscle force generation (22; 53; 107) 

due to alterations of neural and/or metabolic factors (22).  

This reduced functional capacity may be particularly true in aged skeletal muscle, 

where the increase in pro-oxidant production can overwhelm the endogenous anti-
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oxidant defense system, leading to cellular damage, increased muscle frailty and thus a 

decreased functional capacity (39; 49).  

 Specifically, increases in oxidative stress have the potential to depress muscle 

specific force (21; 99), alter myofilament function as a result of loading (70; 72)  and 

perturb calcium handling induced by muscle contractions leading to calpain activation 

(35; 36; 97; 125). Additionally, it is possible that oxidative stress could alter muscle 

function by impeding recovery from injury (64) and other pathological conditions, given 

that muscle precursor cells are sensitive to oxidative stress (86; 104; 140) . 

 

1.7 Oxidative stress and apoptosis; the mitochondrial link: 

 

 

Figure 1.2- Mitochondria as mediators of oxidative stress and apoptosis. 
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Myonuclei undergo apoptosis in many muscle wasting conditions including, but 

not limited to, advanced age (6), disuse (128) and denervation (92; 126). Likewise, 

these conditions are also associated with increases in oxidative stress (101), 

presumably generated through mitochondrial dysfunction, given the importance that the 

mitochondria play in maintaining cellular integrity via ROS production and the regulation 

of the apoptotic pathway (3; 8; 139). Mitochondria house several proteins, which in 

times of cellular stress, are released in to the cytosol through the mitochondrial 

transition pore (mtPTP) in the outer mitochondrial membrane (8; 66; 118). These 

proteins include several modulators of the apoptotic signaling pathway, including 

apoptosis inducing factor (AIF), Cytochrome c, endonuclease G, and smac/diablo which 

initiate a cascade of proteolytic events that converge on the nucleus leading to the 

fragmentation of DNA and ultimately cell death (8; 66). Regulation of the mtPTP 

opening is mediated via the B-cell lymphoma-2 (Bcl-2) family of proteins (47; 66), which 

contains both anti and pro-apoptotic members. Specifically, the pro-apoptotic member, 

Bax, is responsible for the mitochondrial transition pore channel formation via homo-

oligermization and subsequent insertion into the outer mitochondrial membranes 

resulting in pore formation (see Figure 1.2) (47; 66). Conversely the channel is 

negatively regulated by the anti-apoptotic Bcl-2 protein, which acts to inhibit mtPTP 

formation by dimerizing with Bax (8; 66), thus preventing Bax from translocating and 

inserting into the membrane.    

One pathway that directly links oxidative stress and apoptosis starts with the 

phosphorylation and subsequent activation of two members of the redox sensitive 

MAPK pathway; c-jun kinase (JNK) and p-38 (121). Both JNK and p38 are activated by 
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apoptosis signaling kinase 1 (ASK-1) (18), a kinase upstream of the mitochondria (18). 

In a reducing environment ASK-1 remains inactive due to its dimerization with reduced 

thioredoxin (TRX) an anti-oxidant compound that  functions in a very similar manner to 

the glutathione redox system and effectively reduces peroxides, such as H2O2  (27; 

150). However, in an oxidizing environment TRX is oxidized and can no longer bind 

ASK-1, leaving the kinase free to phosphorylate its downstream targets, which include 

both JNK and p38 (27; 121; 150). Both Bax and Bcl-2 have multiple phosphorylation 

sites (30; 147; 148), which when phosphorylated confer conformational changes that 

can either promote, or inhibit their ability to regulate the mtPTP opening and 

consequently apoptosis (65). JNK and p-38 have been shown to each have the 

capability to phosphorylate both Bcl-2 and Bax (65). Bcl-2 phosphorylation causes the 

protein to lose its affinity for Bax, preventing Bcl-2 from sequestering Bax in the cytosol 

and thus abrogating its anti-apoptotic potential (43). Conversely, the phosphorylation of 

Bax causes a conformational change that exposes its N-terminus and promotes its 

ability to insert into the outer mitochondrial membrane and initiate apoptosis (65)      

It should be noted that these pathways, although well characterized in vitro, have 

been very hard to elucidate in vivo and to date no study exists (to the author’s 

knowledge), characterizing the actual, not theoretical, role that the ASK-1 pathway may 

play in myonuclear apoptosis in skeletal muscle. The lack of direct evidence is likely 

due, in part, to the lack of effective antibodies for use in rodent skeletal muscle given 

that ASK-1 gene expression is well characterized in skeletal muscle (13). ASK-1 protein 

levels do not appear to be present in high concentrations in skeletal muscle, making 

elucidating the role that ASK-1 may play in the oxidative stress apoptotic continuum 
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hard to clarify. Although direct manipulations of the signaling that occurs in skeletal 

muscle in response to oxidative stress is difficult to ascertain, taken as a whole the 

literature shows evidence that a causal relationship between an oxidant mediated 

stressor and the initiation of both the extrinsic (inflammatory mediated) and intrinsic 

(mitochondrial mediated) apoptotic pathways does exist. 

  

 

1.8 Countermeasures to oxidative stress: 

  

 Gaining clearer insight into the molecular signaling pathways involved in aging 

and disuse-mediated muscle atrophy is paramount in developing nutritional and/or 

pharmacological interventions to minimize protein loss and attenuate the functional 

decrements associated with atrophic conditions. To date, numerous studies have been 

undertaken to evaluate the efficacy of various compounds, including antioxidants 

(vitamin E & C) (9; 124; 133), enzyme antagonists (allopurinol) (85) and other signaling 

modulators (NFk-B inhibitors) (59), in improving physiological and functional outcomes 

following atrophic stimuli. The results of these interventional studies vary from showing 

no beneficial effects of supplementation interventions (37) , to showing promising 

protective effects with regard to muscle mass (9; 124; 149) and function (9; 85). 

Although the potential seems clear for antioxidant and other signal modifying 

compounds to provide protection against oxidative stress by acting as free radical 

scavengers, antioxidant enzyme enhancers, or promoters of mitochondrial biogenesis, 

there are many variables to consider. The bioavailability of a compound, the chosen 
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route of administration and its metabolism within an animal (82), may alter their efficacy 

as anti-atrophic countermeasures, potentially explaining the lack of congruency in the 

literature (51). 

 If in fact one believes that mitochondria are the primary source of ROS within a 

cell and that their integrity and content are directly related to the aging process (45; 49), 

then an ideal countermeasure to both aging and disuse-associated oxidative stress and 

subsequent muscle atrophy would be a compound with direct free radical scavenging 

capabilities, the capacity to upregulate the endogenous antioxidant defense system and 

directly improve mitochondrial content and function, leading to a reduction in pro-oxidant 

production. Fortunately, it seems such a compound exists; resveratrol. 

 

1.9 Resveratrol, an antioxidant and activator of Sirtuin 1: 

 

 Resveratrol (3,5,4,trihydroxystilbene) is a naturally occurring polyphenol found in 

over seventy plant species, including grapes, peanuts and mulberries. It belongs to the 

stilbene family of phytoalexins, which are anti-microbial compounds produced in plants 

in response to bacterial, or fungal infections (15). Resveratrol has gained popularity 

over the past decade due to its potent anti-oxidant and anti-aging properties (83; 96; 

109).  Recent studies have shown resveratrol to improve the outcomes of pathological 

conditions ranging from cancer (16; 95; 112; 138; 149), chronic inflammation (34; 105; 

111) and neurodegenerative diseases (111). Specifically, resveratrol has been shown to 

mediate cardiomyocyte survival following simulated hypoxia/reperfusion by up- 

regulating both the antioxidant thioredoxin and the anti-apoptotic protein Bcl-2 (27).  
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Resveratrol also stimulated glutathione synthesis in alveolar epithelial cells exposed to 

cigarette smoke extract (68; 95). Additionally, several recent studies demonstrated the 

ability of resveratrol to specifically induce the transcription of two key antioxidant 

enzymes, catalase (68; 73; 95; 117) and MnSOD (68; 95; 109; 110; 117), both in vitro 

and in vivo.  

With regard to skeletal muscle, resveratrol administration has effectively 

attenuated protein degradation in murine myotubes treated with proteolysis-inducing 

factor and attenuated muscle atrophy, in vivo, in a mouse model of cachexia (149).  

Furthermore, acute dietary resveratrol supplementation attenuated lipid peroxidation 

and improved the redox status, (quantified by the reduced to oxidized glutathione ratio), 

in aged murine skeletal muscle exposed to a repetitive loading protocol (117). Likewise, 

acute resveratrol administration was able to attenuate lipid peroxidation and reduce 

H2O2 concentrations in skeletal muscles from aged animals undergoing extended 

unloading (54). In an in vitro model of anti-viral therapy, the addition of resveratrol to 

primary myoblasts isolated from human quadriceps muscles which were treated with 

protease inhibitors, the hallmark treatment of those individuals infected with the Human 

Immunodeficiency Virus (HIV), resveratrol completely ablated the increase in ROS that 

is known to occur following protease inhibitor treatments.  Moreover, supplementation 

with a combination of a low dose of resveratrol and coenzyme Q improved both the 

inflammatory status and morphological profile in quadriceps muscles from dystrophic 

mice (98). The protective effect of resveratrol with regard to the aforementioned 

parameters is significant because muscle regeneration is the one of the key deficiencies 
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with muscular dystrophies and therefore it is possible that resveratrol may enhance the 

capacity of muscle to regenerate under pathological conditions.  

Despite the fact that resveratrol has the biochemical capacity to directly 

scavenge free radicals due to its phenol ring structure and in fact, resveratrol has 

repeatedly been shown to be a potent scavenger of ROS in numerous cell types 

exposed to pro-oxidants (16; 61; 83; 110). However, its rapid first pass metabolism in 

mammals and thus relatively low bioavailability (28; 40; 82), may limit its role as a direct 

ROS scavenger in vivo. Consequently, in vivo, the various health benefits of resveratrol 

can more likely be attributed to its ability to activate the NAD dependent deacetylase, 

silent mating type information regulation homolog1, or sirtuin1 (Sirt1) (4; 74).  

Sirt1 has been shown to play a role in a variety of important physiological 

functions including gluconeogenesis, energy expenditure, lipid oxidation, mitochondrial 

biogenesis and the regulation of oxidative stress and survival across a wide array of cell 

types (67; 74; 93; 144; 150). Sirt1 effectively protects certain mammalian cells from 

apoptosis by deaceytylating and thus inactivating p53 (41), furthermore, Sirt1 

specifically protects against Bax-induced apoptosis through activation of the Bax 

transcriptional inhibitor Ku70 (7). Additionally, Sirt1 upregulates the transcription of both 

MnSOD and catalase (41), further showcasing its potential as a protective mechanism 

against oxidative stress. Sirt1 is also activated with exercise (134) and under conditions 

of nutrient deprivation (19; 145), underscoring its effectiveness as a caloric restriction 

mimetic. This is significant because both exercise (127; 131) and caloric restriction (12; 

19; 75)  are proven countermeasures to combat both oxidative stress and myonuclear 

apoptosis. Therefore, we would expect resveratrols’ ability to activate Sirt1, to effectively 
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reduce muscle loss during both disuse and aging. In a recent study, resveratrol 

stimulated muscle precursor cell proliferation in a Sirt1 dependent manner (106), further 

expanding the mechanisms by which resveratrol supplementation may improve muscle 

mass and function by enhancing muscles regenerative capacity, which has been shown 

to be augmented with aging (24; 25) and in certain pathological conditions. 

Furthermore, and perhaps most importantly, Sirt1 is a powerful regulator of PPARγ co-

activator (PGC-1α) (135), which is considered to be the master regulator of 

mitochondrial function (78). PGC-1α is decreased during atrophic conditions (119; 120), 

but muscle specific overexpression of PGC-1α confers protection against both 

denervation and fasting-induced skeletal muscle atrophy (120). Therefore, the ability of 

Sirt1 to promote mitochondrial biogenesis, including structural components of the 

electron transport chain, ATPases, oxidative enzymes and the induction of MnSOD, 

provides compelling evidence with regard to resveratrols’ potential ability to protect 

skeletal muscle from oxidative stress-induced damage and thus myonuclear apoptosis 

(see figure 1.3).  
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Figure 1.3- Potential mechanism(s) of resveratrol mediated protection. 

  

 

 

1.10 Conclusion: 

As of 2008 the United States Department of Health and Human Services projects 

that the number of individuals over the age of 65 will double in the next 20 years, 

making sarcopenia a debilitating and costly reality for an ever increasing percentage of 

our population. A relationship between increases in oxidative stress and decreases in 

muscle mass and function clearly exists, thus it is increasingly imperative that effective 

therapies are found to alleviate oxidative stress and thus improve the quantity and 

quality of skeletal muscle in elderly individuals. Overall, the reliance of skeletal muscle 

viability on proper muscle function skeletal muscle viability highlights the importance of 
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promoting mitochondrial biogenesis and conserving mitochondrial membrane integrity 

as important countermeasures to reduce skeletal muscle atrophy associated with disuse 

and aging. Sirt1 activation is positively associated with an increased resistance to 

oxidative stress and apoptosis, likely due to its capacity to promote mitochondrial 

biogenesis. Resveratrol is a potent activator of Sirt1 and thus shows promise as an 

effective therapy to lessen mitochondrial-induced oxidative stress and apoptosis. There 

has been limited animal research conducted regarding the protective effects of 

resveratrol supplementation on skeletal muscle. Given the inherent differences between 

cell culture models and whole animals models, it is important to elucidate the specific 

signaling pathways of resveratrol, in vivo, to further our understanding of its’ capacity to 

protect against skeletal muscle atrophy. 

The major goals of this research are to further understand the interplay between 

oxidative stress and skeletal muscle atrophy and to evaluate the efficacy of resveratrol 

as a countermeasure to both mitochondrial-induced oxidative stress and apoptosis. It is 

hypothesized that with skeletal muscle disuse and advanced age there will be an 

increase in both oxidative stress and a concomitant decrease in muscle mass and 

function. Resveratrols’ capacity to upregulate the endogenous anti-oxidant defense 

system, increase mitochondrial biogenesis and thus enhance cell viability, makes it an 

ideal candidate to combat oxidative stress and sarcopenia (see Figure 1.4). Thus it is 

hypothesized that resveratrol will improve muscle mass and function with both disuse 

and aging-induced muscle atrophy.  It is expected that the results of the current study 

will help to further our understanding of the usefulness of dietary supplements as 

effective countermeasures to alleviate the mechanism(s) underlying sarcopenia.  
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Figure 1.4- Working model of resveratrol mediated protection.
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ABSTRACT 

Hindlimb suspension (HLS) elicits muscle atrophy, oxidative stress, and apoptosis in 

skeletal muscle.  Increases in oxidative stress can have detrimental effects on muscle 

mass, function and can potentially lead to myonuclear apoptosis.  Resveratrol is a 

naturally occurring polyphenol possessing both anti-oxidant and anti-aging properties.  

To analyze the capacity of resveratrol to attenuate oxidative stress, apoptosis and 

muscle force loss were measured following 14 days of HLS. Young (6 mo) and old (34 

mo) rats were administered either 12.5mg/kg/day of trans-resveratrol, or 0.1% 

carboxymethylcellulose for 21days, including 14 days of HLS.   HLS induced a 

significant decrease in plantarflexor isometric force, but resveratrol blunted this loss in 

old animals. Resveratrol increased gastrocnemius catalase activity, MnSOD activity, 

and MnSOD protein content following HLS. Resveratrol reduced hydrogen peroxide and 

lipid peroxidation levels in muscles from old animals after HLS. Caspase 9 abundance 

was reduced and Bcl-2 was increased, but other apoptotic markers were not affected by 

resveratrol in the gastrocnemius muscle after HLS. The data indicate that resveratrol 

has a protective effect against oxidative stress and muscle force loss in old HLS 

animals; however, resveratrol was unable to attenuate apoptosis following HLS. These 

results suggest that resveratrol has the potential to be an effective therapeutic agent to 

treat muscle functional decrements via improving the redox status associated with 

disuse. 
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Introduction 

Both advanced age and skeletal muscle disuse are associated with atrophy and 

an increased production of reactive oxygen species (ROS) in skeletal muscle (27), 

leading to an augmented oxidant-load.  Oxidative stress occurs when an increase in 

oxidant production exceeds an organisms’ capacity to buffer them, via a complex 

coordination of the endogenous antioxidant defense system. During extended periods of 

oxidative stress there is an eventual loss of cellular integrity mediated by the oxidation 

of lipids (29), proteins (26) and nucleic acids (18), promoting a cycle of increased 

oxidant production. This results in elevated levels of oxidative damage, which limits both 

the cellular repair system and the enzymatic antioxidant defense system (14). The exact 

mechanisms by which oxidative stress acts as a potentiator of muscle atrophy are 

largely unknown, however, several links between oxidative stress and atrophy have 

been postulated  (32). 

Oxidative stress is upstream of apoptotic signaling in muscle cells in vitro (46), 

and results in the initiation of the intrinsic mitochondrial apoptotic pathway.  Of particular 

interest  in the current study was to determine if redox sensitive apoptotic signaling (49) 

could  be suppressed by resveratrol administration during experimentally-induced 

muscle disuse. This is an important area of inquiry, because myonuclei undergo 

apoptosis during muscle disuse (42,44), and this is thought to contribute to fiber 

atrophy, especially in aging muscles (2,3). Likewise, muscle disuse is associated with 

increases in oxidative stress (1,27), presumably mediated through mitochondrial 

dysfunction via ROS production and the regulation of the apoptotic pathway (17,44). 
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Antioxidant supplementation has been shown to be an effective counter measure 

to combat oxidative stress in a wide variety of tissue types and conditions (7,33),  and it 

is speculated that this might be an approach to reduce muscle wasting associated with 

both disuse (40) and aging (7). Resveratrol (3,5,4,trihydroxystilbene) is a naturally 

occurring polyphenol found in over seventy plant species, including grapes, peanuts 

and mulberries (5). Resveratrol has gained popularity over the past decade due to its 

potent anti-oxidant and anti-aging properties  (24,36). Recent studies have shown 

resveratrol to have positive effects on the outcomes of pathological conditions ranging 

from cancer (6)  chronic inflammation  (19) and neurodegenerative diseases (37). 

Specifically, resveratrol has been shown to mediate cardiomyocyte survival following 

simulated hypoxia/reperfusion by up regulating both the antioxidant thioredoxin and the 

anti-apoptotic protein Bcl-2 (4,10), thus underscoring its potential to act as both an 

antioxidant and anti-apoptotic compound. Likewise in a recent study in PC12 cells 

exposed to hydroxynonenal , an oxidizing byproduct of lipid peroxidation, pretreatment 

with resveratrol decreased the amount of the pro-apoptotic Bax protein, decreased 

caspase 3 activity and increased the amount of anti-apoptotic Bcl-2 protein, conferring 

complete protection against oxidative stress and apoptotic signaling (41).  Additionally, 

recent data suggest that resveratrol induces the transcription of two key antioxidant 

enzymes, catalase (9,21) and MnSOD (36,39).  Furthermore, a recent study in our 

laboratory found acute dietary supplementation with resveratrol to effectively reduce 

indices of oxidative stress in repetitively loaded skeletal muscles, presumably through 

the upregulation of antioxidant enzymes including MnSOD, an important mitochondrial 

antioxidant in muscles from both young and old animals (39). The efficacy of acute 
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resveratrol administration has been established for several pathological conditions; 

however, the use of chronic resveratrol administration as a counter-measure to prevent 

muscle loss caused by disuse has not been established. 

Therefore, the primary aim of this study was to evaluate the efficacy of a daily 

moderate dose of resveratrol to ameliorate oxidative stress and subsequent myonuclear 

apoptosis induced by skeletal muscle disuse in both young and old animals. In the 

present investigation, it was hypothesized that resveratrol would reduce the indices of 

hindlimb suspension (HLS)-induced oxidative stress in skeletal muscle and thus lessen 

the potential for downstream apoptotic signaling and subsequent muscle atrophy 

stemming from myonuclear loss.  Furthermore, it was hypothesized that resveratrol 

administration would preserve muscle function following HLS both by preservation of 

muscle mass during the HLS protocol and by providing a more favorable redox 

environment. 
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METHODS 

 

Animals.  All experiments were conducted on young adult (6mo) and old (34mo) 

Fischer Brown Norway x 344 male rats. The animals were obtained from the NIA colony 

house at Harlan (Indianapolis, IN) and kept in pathogen-free conditions at ~20°C, on a 

reversed twelve-hour light cycle. All experimental procedures carried approval from the 

Institutional Animal Use and Care Committee from West Virginia University School of 

Medicine. The animal care standards followed the recommendations for the care of 

laboratory animals as advocated by the American Association for Accreditation of 

Laboratory Animal Care (AAALAC) and fully conformed to the American Physiological 

Society's "Guiding Principles for Research Involving Animals and Human Beings.” 

 

Hindlimb Suspension.   The hindlimb suspension technique employed in the current 

study is a modification of the technique originally described by Morey-Holton and 

Globus (25). This method allows for an even load distribution on the tail, permits the 

animals with 360° of movement around the cage, and assures that the forelimbs 

maintain contact with a grid floor, allowing the animals to move and access food and 

water freely as previously described (44,45). Briefly, orthopedic tape was applied along 

the proximal one-third of the tail then placed through a wire harness that is attached to a 

swivel placed at the top of a specially designed hindlimb suspension cage. Sterile gauze 

was then wrapped around the orthopedic tape and was subsequently covered with a 

thermoplastic material, which formed a hardened cast (Vet-Lite; Veterinary Specialty 

Products, Boca Raton, FL).  The distal tip of the tail was examined daily to verify that 

the procedure did not occlude blood flow to the tail. The suspension height was 
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adjusted to prevent the animal’s hindlimbs from touching any supportive surface, with 

care taken to maintain a suspension angle that did not exceed 30°. Weight bearing 

control animals were allowed to ambulate freely in their cages. 

 

Experimental Protocol.  Prior to commencement of the experimental protocol, all 

animals went through a 7-day acclimation period, which included the daily oral gavage 

of 1mL of distilled H2O.  Animals were hindlimb suspended (HLS) for 14 days. Seven 

days preceding suspension and continuing throughout the suspension protocol, all 

animals received either 1mL of 0.1% Carboxymethylcellulose dissolved in deionized 

water, or 1mL of trans-resveratrol suspended in 1mL of 0.1% Carboxymethylcellulose.  

Resveratrol was purchased from Orchid Pharmaceuticals (India).  The resulting 

solutions were administered via oral gavage at a dose of 12.5mg/kg/day, for a total of 

21 days. This dosage was chosen to provide a low to moderate daily dose of resveratrol 

that would have the potential to be therapeutic, but would not be high enough to be pro-

apoptotic as can be seen with higher doses of resveratrol (13). Age-matched, non-

suspended animals served as weight-bearing controls (Figure 1). 

 

Refer to Figure 1 

 

Force Analysis. Pre and post-HLS force measurements were assessed in anesthetized 

animals using a custom built rat dynamometer (8,38).  The rat was placed supine on a 

heated X–Y positioning table of the rodent dynamometer, and anesthesia was induced 

with 5% isoflurane. Anesthesia was maintained in the animals over the duration of the 
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experiment with 2% isoflurane. The left foot was secured to the footplate at an ankle 

angle of 90° and the knee was braced to ensure that forces were transmitted to the 

footplate. Vertical forces applied to the aluminum sleeve fitted over the dorsum of the 

foot were translated to a load cell transducer in the load cell fixture on the footplate. 

Platinum stimulating electrodes (Grass Medical Instruments, Quincy, MA) were inserted 

subcutaneously to span the tibial nerve in the popliteal fossa. The maximal isometric 

force of the plantar flexor muscle group was evaluated by stimulating the tibial nerve 

using supramaximal square wave pulses at 100Hz for a duration of 1000 ms using a 

SD9 stimulator (Grass Medical Instruments, Quincy, MA). The voltage used in these 

experiments was 10% greater than the voltage required to obtain maximal force 

production. Maximal force was determined off-line via custom Labview based software 

(8). The maximal forces for three isometric contractions were averaged for each data 

point. These in vivo  force records were obtained before and after HLS. The percent in 

force loss with HLS was obtained by comparing the average pre-HLS for record with the 

post-HLS force record. 

 

Muscle preparation.  Immediately following the last contraction, the gastrocnemius 

muscle was dissected from both limbs muscle, weighed and snap frozen. To eliminate 

the possibility that the isometric muscle function tests could acutely affect 

measurements of oxidative stress, the gastrocnemius muscle from the limb that was not 

evaluated for muscle function (the right limb) was used for analysis of oxidative enzyme 

activities, oxidative stress, and apoptotic indices. The animals were then euthanized by 

removing the heart. 
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Protein Isolation.  Seventy-five micrograms of gastrocnemius muscle from each animal 

was homogenized in RIPA buffer (1% Triton x-100, 150mM NaCl, 5mMEDTA, 10mM 

Tris; pH: 7.4) for assessment of protein expression, caspase activity and cell death as 

measures by an ELISA. For all oxidative enzyme activity assays and/or redox status 

assessments muscle samples were homogenized in either PBS, or the kit specific buffer 

provide by the manufacturer. Muscle samples were homogenized in 500 μL of the 

appropriate ice-cold lysis buffer using a mechanical homogenizer. Muscle homogenates 

were centrifuged at 1000 x g for 5 minutes at 4°C. The resulting supernatant was 

collected and divided into two portions and frozen at –80°C  either with, or without a 

protease inhibitor cocktail containing 104 mM 4-[2-aminoethyl]-benzenesulfonyl fluoride 

hydrochloride, 0.8 mM aprotinin, 2 mM leupeptin, 4 mM bestatin, 1.5 mM pepstatin A, 

and 1.4 mM E-64 (Sigma-Aldrich, St. Louis, MO) added to it. Protein concentrations for 

each sample were determined in duplicate using the DC Protein Assay kit (Bio-Rad, 

Hercules, CA). 

Catalase Activity. The activity of catalase was determined in gastrocnemius muscle 

homogenates using a commercially available kit (# 707002 Cayman Chemical 

Company, Ann Arbor, MI) as described previously in our laboratory (39). The samples 

were read on a microplate reader (DYNEX technologies, Chantilly VA) at an 

absorbance of 520nm. All analyses were measured in duplicate and the samples were 

normalized to µg of protein per μL of muscle homogenate. 
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Manganese Superoxide Dismutase (MnSOD) and Copper-Zinc Superoxide 

Dismutase (CuZnSOD) Activity Levels.  Superoxide dismutase activity was measured 

in gastrocnemius muscle homogenate using a colorimetric enzyme activity kit (Cayman 

Chemical Company Ann Arbor, MI) following the manufacturer’s guidelines. Both total 

SOD activity and MnSOD activity were obtained. CuZnSOD activity was determined by 

subtracting MnSOD activity from total SOD activity.  The assay was performed with 

slight modifications to the manufacturer’s directions. All analyses were measured in 

duplicate and the samples were normalized to µg of protein per μL of muscle 

homogenate as described previously by our laboratory (14).  Briefly, muscle samples 

were homogenized in 20mM HEPES buffer, containing 1mM EGTA, 210mM mannitol, 

and 70 mM sucrose, and centrifuged at 1000 x g for 10 min. 50 µl of the resulting 

supernatant was incubated either with, or without, 12 mM potassium cyanide to inhibit 

CuZnSOD and extracellular SOD activity.  The sample absorbance was measured at 

450 nm using a 96-well plate reader (Dynex Tech., Chantilly VA., USA). 

 

Immunoblots. The protein content of the oxidative enzymes Catalase, CuZnSOD, and 

MnSOD and the apoptotic markers Bax and Bcl-2 were assessed in gastrocnemius 

muscle homogenates. Either β-tubulin or GAPDH was used as loading controls. 

Although most blots were probed with β-tubulin, GAPDH was used as a loading control 

for blots in which we probed for Bax, because we had intended on also measuring 

apoptosis inducing factor (AIF) on the same blot, because AIF and Bax run at different 

molecular weights. However, AIF runs at a similar molecular weight as β-tubulin (data 

not shown) and therefore, we could not use β-tubulin as the loading control for these 
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blots.   Thirty to forty micrograms of protein were loaded into each well of a 4%–12% 

gradient polyacrylamide gel (Invitrogen, Carlsbad, CA) and separated by routine sodium 

dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) for 1.5hrs at 20°C, 

followed by transfer to a nitrocellulose membrane for 70min at 35V. All membranes were 

blocked in 5% nonfat milk (NFM) for 1 hour at room temperature. The membranes were 

then incubated overnight at 4°C in the appropriate primary antibodies. Primary 

antibodies were diluted in Tris-buffered saline, with 0.1% Tween-20 (TBST) and 10% 

sodium azide. Membranes were then washed in 0.05% TBST followed by incubation in 

the appropriate dilutions of secondary antibodies (diluted in 5% NFM in TBST) 

conjugated to horseradish peroxidase. The signals were developed using a 

chemiluminescent substrate (Lumigen TMA-6; Lumigen, Southfield, MI) and visualized 

by exposing the membranes to x-ray films (BioMax MS-1; Eastman Kodak). Digital 

records were captured by a Kodak 290 camera, and protein bands were quantified using 

1D analysis software (Eastman Kodak). Bands were quantified as optical density x band 

area and expressed in arbitrary units relative to the loading control bands. 

 

Hydrogen Peroxide (H2O2) Content.  H2O2 content in gastrocnemius muscle 

homogenate was measured using a fluorescent assay according to the manufacturer’s 

recommendations (Cell Technology, Mountain View, CA). Briefly, 50 μL of control, 

unknown muscle samples, or H2O2 standards were mixed with 50 μL of the reaction 

cocktail provided in the kit and added to each well to initiate the reaction. The plate was 

then incubated in the dark for 10 minutes at room temperature. The intensity of the 

fluorescent signal was detected using an excitation wavelength of 530 nm and an 
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emission wavelength of 590 nm. A linear regression was performed by plotting the 

resultant florescent intensities from the known standards and subsequently the 

unknown samples were fit to the corresponding linear equation. All analyses were 

measured in duplicate and the samples were normalized to µg of protein per μL of 

muscle homogenate as determined by the DC Protein Assay Kit (Bio-Rad Hercules, 

CA). 

Lipid Peroxidation. Malondialdehyde (MDA) and 4-hydroxyalkenals (HAE) were 

assessed with reagents from Oxis International (BIOXYTECH LPO-586). Approximately 

100 mg of gastrocnemius muscle was homogenized in 750 μL of ice cold buffer 

containing phosphate-buffered saline (20 mM, pH 7.4) and 5 μL of 0.5 M butylated 

hydroxytoluene in acetonitrile per 1 mL of tissue homogenate. Assay reagents were 

added following the manufacturer's recommendations. Briefly, the muscle homogenate 

was centrifuged at 3000 x g at 4°C for 10 minutes, and subsequently the supernatant 

was used to assess lipid peroxidation. The sample was incubated in the proper 

reagents at 45°C for 60 minutes, and then centrifuged at 15,000 x g for 10 minutes. The 

absorbance of the resulting supernatant was read at 586 nm. All analyses were 

measured in duplicate and the samples were normalized to µg of protein per μL of 

muscle homogenate as determined by the DC Protein Assay Kit (Bio-Rad Hercules, 

CA). 

Caspase Activity. The proteolytic activity of caspase 9 and 3 were assessed with a 

fluorometric activity assay using the commercially available substrates; AC VDVAD-

AFC and AC-DEVD-AFC (Alexis Biochemical, San Diego, CA) respectively.  Briefly, 
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50μL of caspase activity buffer (50 mM PIPES, 0.1 mM EDTA, 10% glycerol, 1 mM 

DTT) was added to each well of a 96-well fluorescent microplate (Thermo Fisher 

Scientific). Subsequently, 50μL of gastrocnemius muscle homogenate and 10μL of the 

appropriate caspase substrate (1mM) were added to each well.  Caspase activity was 

determined by measuring fluorescent intensity using a fluorescent microplate reader at 

an excitation of 400nm and an emission of 505nm. The microplate was incubated at 

37°C for 2-hours with caspase activity determined by subtracting the OD readings at 

time 2-hour from the initial reading, to eliminate any background fluorescence that was 

not mediated by caspase activity. All analyses were measured in duplicate and the 

samples were normalized to µg of protein per μL of muscle homogenate as determined 

by the DC Protein Assay Kit (Bio-Rad Hercules, CA). 

 

Cell-Death ELISA Assay. A commercially available ELISA kit (Cell Death Detection 

ELISA, Roche Diagnostics, Indianapolis, IN) was used to quantify DNA fragmentation in 

gastrocnemius muscle homogenate. Briefly, the wells of a 96-well plate were coated 

with a primary anti-histone mouse monoclonal antibody.  Following the addition of 100 

μL of muscle homogenate, a secondary anti-DNA mouse monoclonal antibody coupled 

to peroxidase was added to each well.  The substrate, 2,2’-azino-di-(3-

ethylbenzthiazoline sulfonate) (ABST) was used to photometrically determine the 

amount of peroxidase retained in the immunocomplex.  The colorimetric change of each 

well was determined at a wavelength of 405nm using a Dynex MRX plate reader and 

computer software (Revelation, Dynatech Laboratories, CA).  All analyses were 

measured in duplicate and the samples were normalized to µg of protein per μL of 
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muscle homogenate as determined by the DC Protein Assay Kit (Bio-Rad Hercules, 

CA). The resulting OD was recorded as the apoptotic index (OD405 / mg protein).  This 

assay measures DNA fragmentation in myonuclei, satellite cells, and non-muscle cell 

nuclei. However,  because DNA fragmentation as determined by this ELISA is directly 

proportional to TUNEL identification of apoptotic muscle nuclei in old rat muscle after 

hindlimb suspension (30),  the data obtained in the ELISA assay are a reasonable 

indicator of the apoptotic environment in skeletal muscle of the experimental animals. 

 

Statistics.  Statistical analyses were performed using the SPSS 13.0 software package 

(SPSS, Chicago, IL). A multiple analysis of variance was used to examine differences 

between age, suspension and supplementation. Tukey’s post-hoc analyses were 

performed to protect against type 1 errors.   Where appropriate, student t-tests were 

implemented to evaluate paired comparisons. Statistical significance was accepted at p 

≤ 0.05. Data are reported as mean ± standard error of the mean. 
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RESULTS 

 

Body Weight. Resveratrol was unable to suppress the body weight loss associated 

with  HLS. All animals were weighed prior to the experimental protocol and immediately 

before euthanasia (Table 1). Older animals were significantly heavier than young 

animals (460 ± 38g vs.  548 ± 39g; p ≤ 0.05). Young vehicle control suspended (YVCS) 

animals lost ~15% of their body weight during the 14-day suspension protocol, while old 

vehicle control suspended (OVCS) animals lost ~ 13.5% of their body weight during the 

14-day suspension protocol. There was no significant effect of resveratrol administration 

on the body weight of young vehicle control  (YVC),  YVCS,  old vehicle control (OVC) 

or old OVCS  animals. There was no significant difference between the percent of total 

body weight lost during the 21-day experimental protocol when comparing groups of 

HLS animals (Table 1). 

 

Refer to Table 1 

 

CuZnSOD Enzyme Activity and Protein Content. Both aging and HLS significantly 

increased the activity of CuZnSOD in gastrocnemius muscles, but this was not affected 

by resveratrol. CuZnSOD activity was significantly increased in gastrocnemius muscles 

from old animals compared to gastrocnemius muscles from young animals (0.083 ± 

.007 vs. 0.055 ± 0.002 U/ml/mg; p ≤ 0.05), resveratrol administration did not alter 

CuZnSOD further with aging (Figure 2A). HLS increased CuZnSOD activity in 

gastrocnemius muscles from both young and old animals regardless of resveratrol 

administration. There was no change in CuZnSOD protein content in the gastrocnemius 
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muscle from any treatment, or age group (Figure 2B). Resveratrol increased CuZnSOD 

activity (Figure 2A) but not CuZnSOD content (Figure 2B) in control muscles from old 

animals. 

 

Refer to Figure 2 

 

MnSOD Enzyme Activity and Protein Content.  MnSOD activity was increased by 

aging and resveratrol in control muscles of old animals. While HLS decreased MnSOD 

activity, MnSOD activity in resveratrol-treated muscles after HLS was elevated over the 

control muscles of old rats. Relative to young animals, MnSOD activity was 78% greater 

(p ≤ 0.05) in vehicle control old animals and resveratrol administration further increased 

MnSOD activity in old non-suspended animals by an additional ~20% (p ≤ 0.05),  

(Figure 2C). HLS had no effect on MnSOD activity in young animals; however, HLS 

significantly reduced MnSOD activity in old vehicle control animals by approximately 

23% (20.3 ± 1.7 vs. 14.6 ± 0.98 U/ml/mg, p ≤ 0.05), resveratrol administration was able 

to completely abolish the decrease in activity seen with HLS. There was no aging effect 

on MnSOD protein content in non-suspended animals, however, similar to activity 

levels, MnSOD protein content was significantly reduced in old suspended animals 

(Figure 2D). Furthermore, resveratrol administration mitigated the effects of HLS on 

MnSOD protein content. 

 

Catalase Activity and Protein Content.  Resveratrol increased catalase activity in 

control muscles of old rats. Catalase activity significantly increased with aging in 
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gastrocnemius muscles from both vehicle control animals and animals that were 

administered resveratrol (p ≤ 0.05) as compared to young adult animals (Figure 2E). 

Furthermore, gastrocnemius muscles from old non-HLS animals who received 

resveratrol had higher catalase activity than old non-HLS vehicle controls (6.14 ± 0.61 

vs. 8.56 ± 0.81 mU activity /mg protein, p ≤ 0.05). HLS had no significant effect on 

catalase activity in either age group, and resveratrol administration showed no further 

increase in catalase activity following HLS. Catalase protein content increased with HLS 

in both young and old animals (Figure  2F). Resveratrol further augmented catalase 

protein abundance in young HLS animals and old non-suspended animals. 

 

Hydrogen Peroxide (H2O2) Concentrations.   H2O2 was assessed in gastrocnemius 

muscle homogenates as an indicator of oxidant load during aging and HLS. Aging and 

HLS increased H2O2 levels in gastrocnemius muscles of old rats, but resveratrol 

suppressed this increase in H2O2 content.  H2O2 levels were ~3 fold higher (p ≤ 0.05) in 

gastrocnemius muscles from old animals when compared to gastrocnemius muscles 

from young animals (Figure 3A). There was a significant interaction of age and 

suspension, (p ≤ 0.05). HLS had no significant effect on H2O2 content in young 

gastrocnemius muscles, regardless of resveratrol administration. Resveratrol 

administration significantly (p ≤ 0.05) reduced H2O2 levels in gastrocnemius muscles 

from old control animals and old-HLS animals by 23% and 16% respectively, when 

compared to gastrocnemius muscles from old vehicle control  and old vehicle control-

HLS animals, (p ≤ 0.05). There was still a significant increase in H2O2 content following 

HLS in gastrocnemius muscles from both vehicle control (2.29 ± 0.06 vs. 2.55 ± 0.05 
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μmols H2O2 /μg protein; p ≤ 0.05) and resveratrol administered animals (1.77 ± 0.16 vs. 

2.14 ± 0.06μmols H2O2 /μg protein; p ≤ 0.05), however there was no difference in the 

H2O2 content between gastrocnemius muscles from old vehicle control and old 

resveratrol-HLS animals (2.29 ± 0.06 vs. 2.14 ± 0.05μmols H2O2 /μg protein). 

 

Refer to Figure 3 

 

Lipid Peroxidation.  Malondialdehyde (MDA) and 4-hydroxyalkenals (HAE) were 

assessed in whole muscle homogenates as indicators of oxidative damage, specifically 

as markers of muscle lipid peroxidation. Both aging and HLS increased lipid 

peroxidation in the gastrocnemius muscle, but this was suppressed by resveratrol.  HLS 

significantly increased lipid peroxidation by ~55 % (p ≤ 0.05)  in young animals 

regardless of resveratrol administration (Figure 3B). Lipid peroxidation was increased in 

old animals compare to their young counterparts (0.171 ± .02 vs.  0.079 ± 0.01 µM 

[MDA/HAE]/mg protein; p ≤ 0.05). There was no further significant increase in MDA and 

HAE levels in old animals that underwent HLS; however, gastrocnemius muscles from 

old animals that were administered resveratrol had significantly reduced levels of lipid 

peroxidation compare to old vehicle control suspended animals (0.199 ± 0.02 vs. 0.159 

± 0.01 µM [MDA/HAE]/mg protein; p ≤ 0.05), this represented a 20% decrease in MDA 

and HAE levels in old resveratrol suspended animals. 

 

 



www.manaraa.com

62 
 

Bax and Bcl-2 Protein Contents.  Aging was generally associated with increased pro-

apoptotic protein signaling in the gastrocnemius muscle. The pro-apoptotic Bax protein 

levels in gastrocnemius muscles from old animals increased ~1.8 fold (p ≤ 0.05), 

regardless of resveratrol administration (Figure 4A). There was no further effect of HLS, 

or resveratrol administration, in either age group. Similarly, Bcl-2 protein levels 

increased 2.6 fold (p ≤ 0.05)  in gastrocnemius muscles from old vehicle control animals 

when compared to their young counterparts (Figure 2B). Resveratrol administration 

further increased Bcl-2 protein content in gastrocnemius muscles from old resveratrol 

non-HLS animals by ~20% (p ≤ 0.05), when compared to gastrocnemius muscles from 

non-HLS vehicle control animals.  HLS significantly increased Bcl-2 protein content in 

gastrocnemius muscles from old vehicle control-HLS animals by ~18.6% (p ≤ 0.05), 

when compared to gastrocnemius muscles from non-HLS vehicle control rats. There 

was no effect of HLS on Bcl-2 content in gastrocnemius muscles from old animals. HLS 

caused significant increases in Bcl-2 protein content in gastrocnemius muscles from 

both young vehicle control (36%, p ≤ 0.05) and young resveratrol administered (29%, p 

≤ 0.05) animals. There was no effect of resveratrol administration in gastrocnemius 

muscles from young animals. 

 

Refer to Figure 4 

 

Caspase 9 and Caspase 3 Activities.  Caspase 9 and 3 activities were measured via 

fluorometric assays as an assessment of the contribution of mitochondrial mediated 

caspase dependent apoptotic signaling. Resveratrol blunted only the aging and HLS-
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induced increase in caspase-9 activity in muscles of old rats.  Both caspase 9 (Figure 

4C) and caspase 3 (Figure 4D) activities were increased in gastrocnemius muscles from 

old animals, when compared to their young counterparts.  Neither caspase 9  nor 

caspase 3 were altered by HLS, or resveratrol administration, in the muscles of  young 

animals.  There was no effect of resveratrol administration on caspase 9 activity in old-

HLS animals, however, resveratrol administration significantly reduced caspase 9 

activity in gastrocnemius muscles from old non-HLS animals (p ≤ 0.05), eliminating the 

aging effect (Figure 4C).  HLS significantly (p ≤ 0.05) increased caspase 3 activity, in 

gastrocnemius muscles from vehicle control-HLS animals; this increase was 

significantly (p ≤ 0.05) attenuated by resveratrol administration. 

 

DNA fragmentation.  A cell death ELISA was used as an indicator of DNA 

fragmentation and the data are presented as an apoptotic index. The apoptotic index 

was increased by aging and HLS in rat gastrocnemius muscles, but resveratrol failed to 

attenuate this increase. Old animals exhibited a 200% increase (p ≤ 0.05) in DNA 

fragmentation regardless of resveratrol administration (Figure 4E). Similarly, 

gastrocnemius muscles from both young and old HLS animals treated with, or without, 

resveratrol, has significantly increased levels of fragmented DNA indicating greater 

levels of apoptosis. HLS increased the apoptotic index by ~5 fold (p ≤ 0.05) in young 

animals and ~3 fold (p ≤ 0.05) in old animals respectively. Resveratrol had no effect on 

DNA fragmentation in any treatment group (Figure 4E). 
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Gastrocnemius Muscle Wet Weight.  Resveratrol attenuated the HLS-induced atrophy 

of old rats. Gastrocnemius muscles from young animals were significantly heavier than 

their older counterparts (2.28 ±  0.15g vs.1.55 ± 0.06g; p ≤ 0.05) (Figure 5A). HLS 

elicited significant atrophy in the gastrocnemius muscles from young and old rats. 

Gastrocnemius muscles from young HLS animals weighed on average 28.3% (p ≤ 0.05) 

less than gastrocnemius muscles from young ambulatory control animals. Similarly, 

gastrocnemius muscles from old-HLS animals weighed 26.1%  (p ≤ 0.05) less than 

gastrocnemius from old non-HLS animals. Resveratrol administration had no effect on 

the muscle wet weight of gastrocnemius muscles from young animals following HLS 

(1.62 ± 0.12g vs.1.65 ±  0.11g) (Figure 5A). Gastrocnemius muscle wet weight from old 

vehicle control suspended animals (1.09 ±.09g) was 14.2% less than muscle wet weight 

in old resveratrol-treated suspended animals (1.28 ± 0.07g). Although, this difference 

did not quite reach statistical significance (p = 0.062), it reflects a potential for 

resveratrol to protect against muscle loss in old animals.  There were losses of both 

body weight and muscle weight with HLS in old animals. To determine if resveratrol 

provided a muscle specific but not a body weight specific effect, muscle weight was 

normalized to the animal’s body weight. When muscle wet weight was normalized to 

body weight, resveratrol administration significantly attenuated the relative proportion of 

gastrocnemius muscle lost during HLS in old animals (2.21 ± 0.11mg/g vs. 2.80 ± 

0.21mg/g; p ≤ 0.05) (Figure 5B). This preservation of relative muscle mass, but not body 

weight following HLS was not seen in young animals that were administered resveratrol.  

 

Refer to Figure 5 
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Muscle Functional Measurements.  The HLS-induced force loss was markedly 

attenuated by resveratrol in old animals.  Three in vivo maximal isometric contractions 

were averaged to obtain the pre-HLS force record. This was repeated after HLS to 

obtain the post–HLS force data. The percent decrease of in vivo isometric  force was 

determined by comparing the pre-HLS to post-HLS force records. Maximal isometric 

measurements were obtained on age-matched ambulatory rats at the two time points 

that corresponded to the pre-HLS and post-HLS measures in the experimental animals. 

Maximal plantar flexor force did not change over the duration of the study period for 

either young adult or old ambulatory rats (data not shown). Young animals lost an 

average of 33.7% of their maximal isometric force following HLS, and resveratrol 

administration did not attenuate the force loss in these animals (32.09 ± 9.79% vs. 

35.37 ± 7.74%)(Figure 5C). However, resveratrol administration significantly preserved 

isometric force output following HLS in old animals, (45.9 ± 6.8% vs. 31.6 ± 7.4%; p ≤ 

0.05) (Figure 5C).  To determine if muscle force was preferentially maintained during 

weight loss, we normalized isometric force to the animal’s body weight (Figure 5D). 

When the percent decrease in isometric force following HLS was normalized to body 

weight, old vehicle control-HLS  animals lost a significantly larger (p ≤ 0.05)  proportion 

of isometric force output than did their young counterparts, (Figure 5D). This aging 

effect was abolished with resveratrol administration. 
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DISCUSSION 

 

Oxidative stress is positively correlated with skeletal muscle atrophy induced by 

aging (27), denervation (45), disuse (22) and immobilization (45). These atrophic stimuli 

are associated with concomitant increases in lipid peroxidation (47), glutathione 

oxidation (47), protein carbonyl formation (44) and myonuclear apoptosis (12). 

Furthermore, oxidative stress is linked to proteolytic processes that mediate muscle loss 

through caspase 3 activation (45). Although skeletal muscle disuse induces oxidative 

stress in both young and old animals (6,28), skeletal muscle from older animals 

possesses a higher basal level of oxidative stress placing more strain on the 

endogenous antioxidant system, and thus leaving skeletal muscle from these animals at 

greater risk for oxidative damage during periods of disuse, and subsequent diminished 

recovery following disuse. 

The current investigation sought to shed light on the mechanisms underlying 

muscle atrophy with disuse and to ascertain if oxidative stress and/or apoptosis were 

possible contributing factors. Furthermore, the present study sought to elucidate the 

potential role of resveratrol administration to alleviate oxidative stress and apoptosis in 

skeletal muscle from old and young animals. Dietary supplementation with the 

polyphenol, resveratrol, has the potential to exert beneficial effects not only through its’ 

ability to directly scavenge free radicals (36,39) and upregulate components of the 

endogenous antioxidant system  (34), but also by its’ capacity to modulate the signal 

transduction and gene expression of several pathways regulating cellular proliferation 

(20,53), mitochondrial biogenesis  (50,53), metabolism (41),  and apoptosis (20). The 

efficacy of acute resveratrol administration has been established for several 
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pathological conditions (35,36,39); however, this study provides the first insight into the 

use of resveratrol supplementation as a counter-measure to combat muscle loss and 

function caused by disuse. 

Hindlimb suspension resulted in a significant loss of gastrocnemius muscle mass 

as estimated from muscle wet weight (Figure 5A).  Although there was no significant 

preservation of gastrocnemius muscle mass resulting from resveratrol administration, 

there was a significant preservation of the relative ratio of muscle mass preserved 

normalized to animal body weight in old HLS animals (Figure 5B). This protective effect 

may suggest a preferential preservation of skeletal muscle tissue with resveratrol 

administration in old animals following a prolonged period of disuse, since there was no 

difference in the total percentage of body mass lost between old resveratrol 

supplemented and old non-supplemented animals during the experimental period 

(Table1).  Likewise, in old, but not young animals, there was a partial maintenance of 

maximal isometric force of the plantar flexor muscle group following HLS. The percent 

decrease in isometric force following HLS in old resveratrol administered animals was 

similar to the force decrements seen in the plantar flexors of young animals following 

HLS, thus eliminating the interaction of age and suspension. The findings showing a 

protective effect of resveratrol on force production in the current study, are consistent 

with data from Lagouge and colleagues (23), showing greater muscle strength in mice 

fed a high fat diet supplemented with resveratrol. 

In general, the in vivo isometric force output that was measured in the current 

study, is the sum of forces that were generated by all of the individual muscles 

comprising the plantar flexor group. The plantar flexor muscle group consists of the 
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soleus, plantaris and gastrocnemius muscles which, contribute approximately 6%, 16% 

and 78% respectively,  to the mass of the rat plantar flexor muscles (11,51). As a result, 

the gastrocnemius muscle provides the greatest contribution to plantar flexion force 

output, and thus, the partial preservation of relative gastrocnemius muscle wet weight 

and plantar flexion force production are likely linearly related. 

Resveratrol administration mediated endogenous antioxidant enzymes and 

oxidative stress indices in old animals. Specifically, resveratrol administration 

significantly increased MnSOD activity and protein content, but not CuZnSOD activity in 

old HLS animals (Figure 2). This is analogous with data showing that resveratrol 

protected against oxidative stress through the specific induction of MnSOD (39). 

Additionally, in the current study, resveratrol administration increased the content and 

activity of catalase in old non-suspended animals, but it did not further increase catalase 

activity, or expression following HLS. This may be in part because catalase activity is 

already increased with aging and HLS, so it may have reached a maximal point of 

induction. Perhaps most importantly, resveratrol administration reduced indices of 

oxidative stress in gastrocnemius muscles of old HLS animals, as estimated by H2O2 

levels and the lipid peroxidation byproducts (MDA and HAE). This is congruent with 

recent data from our laboratory and others that have shown that resveratrol protects 

against  H2O2  mitigated lipid peroxidation in vivo (39,41) and in vitro (4). The induction 

of catalase by resveratrol has previously been demonstrated  (39), and along with 

increases in MnSOD, may represent important mechanisms by which resveratrol acts to 

reduce H2O2 and H2O2-mediated damage. However, these protective effects of 

increases in antioxidant enzyme activity and concomitant decreases in markers of 
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oxidant load were not seen in young animals administered resveratrol, suggesting that 

there is a differential effect of resveratrol in young and old animals. The fact that 

resveratrol only seems to have an effect in old animals is interesting and is plausibly 

due to different underlying signaling mechanisms that may occur in old animals during 

disuse.  It is also possible that younger animals are able to handle the stress of hindlimb 

suspension and the subsequent detrimental effects that are associated with skeletal 

muscle disuse and therefore the pre-conditioning effect of resveratrol administration 

helps to augment the stress response in old, but not young animals where it is not 

needed. This is congruent with our finding that H2O2 concentrations were not increased 

in young animals following suspension. Although, lipid peroxidation markers were 

increased in muscles from young suspended animals, despite no increases in H2O2 

concentrations, this might indicate a temporal role of oxidative stress in young animals 

during muscle disuse. 

Oxidative stress is upstream of apoptotic signaling in muscle cells in vitro (46) 

and results in the initiation of the intrinsic mitochondrial apoptotic pathway.  Due to its 

multi-nucleated cellular structure, skeletal muscle is an exception to the linear 

relationship between apoptosis and cell death.  Instead, apoptosis in skeletal muscle 

results in a loss of myonuclei and consequent fiber atrophy (3). Myonuclei undergo 

apoptosis in many muscle wasting conditions including, but not limited to, advanced age 

(31), disuse (42,44) and denervation (1,43). Likewise, these conditions are also 

associated with increases in oxidative stress (1,27) presumably mediated through 

mitochondrial dysfunction, given the importance that the mitochondria play in 
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maintaining cellular integrity via ROS production and the regulation of the apoptotic 

pathway (2,17,44). 

Resveratrol administration altered apoptotic signaling (e.g., Bcl-2, caspase 9 

activity) but it did not appear to blunt overall myonuclear apoptosis in muscles from old 

animals. Resveratrol administration increased the protein content of  the anti-apoptotic 

protein Bcl-2 in old non-HLS animals suggesting a preconditioning effect by which 

resveratrol could potentially improve the apoptotic environment of skeletal muscle 

undergoing disuse. Our data are in agreement with a study by Brito and colleagues 

(12), suggesting that resveratrol was able to protect against oxidant-induced apoptotic 

signaling through the upregulation of Bcl-2, without any reductions of Bax protein 

content. Downstream of the mitochondrial mediated apoptotic signaling cascade are the 

proteolytic caspase enzymes. Resveratrol administration significantly decreased 

caspase 9 activity in old non-HLS animals and significantly decreased caspase 3 

activity in old HLS animals. In parallel with the other findings from the current study, 

caspase activity was only attenuated in the gastrocnemius muscles from old animals, 

with no effect being seen in muscles from the young animals. 

Interestingly, the alleviation of oxidative stress and damage in old HLS animals 

administered resveratrol did not translate into protection from apoptosis as estimated 

from the quantity of DNA fragmentation present following HLS. This suggests that the 

protective effect of resveratrol may be in part to its anti-inflammatory and/or anti-

proteolytic capacities rather than anti-apoptotic capabilities. This would be in agreement 

with the fact that resveratrol was able to decrease caspase 3 following HLS in old 

animals, despite having no efficacy in ameliorating apoptosis following HLS. Caspase 3 
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is known to be redox sensitive and to play an initiating role in muscle proteolysis via the 

ubiquitin-proteasome system (20). Although it is not known why a significant increase in 

Bcl-2 protein content did not confer resistance to apoptosis following HLS, it could be 

speculated that the relative contribution of apoptosis versus necrosis and other 

mechanisms of disuse mediated atrophy are temporal in nature. Since data in our study 

were only collected at one time point (14 days), it is possible that early protection 

against apoptosis was not detected, but it still may have contributed to the preservation 

of muscle mass and maintenance of isometric force seen in old animals administered 

resveratrol. 

It is also probable, (although not evaluated in this study), that the protective 

effects of resveratrol observed in the current investigation stem from the ability of 

resveratrol to activate the silent mating type information regulation 2 homolog (Sirt1), a 

NAD+ dependent histone deacetylase (20). Sirt1 has been shown to play a role in a 

variety of important physiological functions including the regulation of oxidative stress.  

Congruent with our current observations regarding resveratrol administration, Sirt1 

activation is reported to upregulate the transcription of both MnSOD (48) and catalase 

(15,16) and reduce reactive oxygen species-induced apoptosis (15).  This highlights the 

potential of Sirt1 to act as a protective mechanism against oxidative stress. The wide 

range of Sirt1’s cell signaling capacity underscores the potential ability of resveratrol to 

mediate a variety of cell signaling pathways and therefore provides many potential 

therapeutic targets that may be responsible for the attenuation of skeletal muscle 

atrophy and force preservation observed during disuse in old animals. Gaining clearer 

insight into the molecular signaling pathways involved in aging and disuse muscle 
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atrophy is paramount in developing nutritional and/or pharmacological interventions to 

minimize protein loss and attenuate the functional decrements associated with atrophic 

conditions. 

In summary, the results of the current study show that resveratrol treatment 

reduces the functional decrements and the oxidative stress levels in rat hindlimb 

muscles in response to disuse.  One potential mechanism for improved muscle function 

in resveratrol treated animals is via a Sirt1 mediated improvement in the endogenous 

antioxidant enzyme activity and the redox status of the aging muscle during disuse. 

However, it is also possible that the protective effects of resveratrol are unrelated to 

Sirt1 or blunting oxidative stress. For example, administration of resveratrol has been 

shown to attenuate protein degradation in murine myotubes treated with proteolysis-

inducing factor, enhanced the proliferation of muscle precursor cells (34),  and blunted 

muscle weight loss, and  protein degradation, in vivo, in a mouse model of cachexia 

(52). Additional studies are needed to determine if resveratrol activation of Sirt1 has the 

potential to be an effective therapeutic intervention, by reducing ROS, or if resveratrol 

functions via another mechanism, to lower the extent of loss of muscle mass or function 

in aged humans, in response to reduced activity or bed rest. 
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Table Legends 

 

Table 2.1 Animal Body Weight. Animals were weighed pre and post-hindlimb 

suspension (HLS). Body weights (BW) are represented in grams (g) and 

as percent changes (%Δ) in body weights during the 21 day the 

experimental protocol. YVC = Young Vehicle Control, YVCS = Young 

Vehicle Control Suspended, YRC = Young Resveratrol Control, YRS = 

Young Resveratrol Suspended, OVC = Old Vehicle Control, OVCS = Old 

Vehicle Control Suspended, ORC = Old Resveratrol Control, ORS = Old 

Resveratrol Suspended. **Denotes significantly difference (p ≤ 0.05) 

between non-suspended treatment matched control (Suspension effect). # 

denotes significantly different than young treatment matched (Aging 

effect). 
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FIGURE LEGENDS 

 

Figure 2.1  Experimental protocol. Resveratrol was administered via oral gavage at 

a dose of 12.5 mg/kg/day for 21 days. One milliliter of 0.01% 

carboxymethylcellulose was used as a vehicle control.  Following 7 days 

of resveratrol administration animals were randomly assigned to 14 days 

of hindlimb suspension (HLS), or continued ambulation. Following the 

experimental protocol, the gastrocnemius muscles were dissected and 

assessed for muscle wet weight, oxidative stress, and apoptotic indices. 

MWW, muscle wet weight. 

Figure 2.2 Enzymatic activities and protein contents of CuZnSOD, MnSOD and 

catalase in response to aging and HLS (A) CuZnSOD activity was 

assessed using a spectrophotometric assay and is expressed as units of 

enzymatic activity (U)/mL/mg protein. (B) CuZnSOD protein content was 

determined via immunoblotting; a representative blot is shown. (C) 

MnSOD activity was assessed using a spectrophotometric assay and is 

expressed as units of enzymatic activity (U)/mL/mg protein. (D) MnSOD 

protein content was determined via immunoblotting; a representative blot 

is shown. (E) Catalase activity was assessed using a spectrophotometric 

assay and is expressed as milliunits of enzymatic activity (mU)/mg protein. 

(F) Catalase protein content was determined via immunoblotting; a 

representative blot is shown. YC= Young Control, YS = Young 

Suspended, OC = Old Control, OS = Old Suspended, YVC = Young 
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Vehicle Control, YVCS = Young Vehicle Control Suspended, YRC = 

Young Resveratrol Control, YRS = Young Resveratrol Suspended , OVC 

= Old Vehicle Control, OVCS = Old Vehicle Control Suspended, ORC = 

Old Resveratrol Control, ORS = Old Resveratrol Suspended.** p ≤ 0.05, 

non-suspended treatment vs. matched control (Suspension effect). # p ≤ 

0.05, young treatment matched (Aging effect). * p ≤ 0.05, vehicle control 

vs. age-matched and treatment matched group (Effect of resveratrol). 

 

Figure 2.3 Resveratrol attenuated increases in hydrogen peroxide (H2O2) 

concentration and lipid peroxidation associated with HLS in old 

animals.  (A) H2O2 concentrations were determined fluorometrically in 

gastrocnemius muscle homogenate. Data are expressed as 

µmols/H2O2/µg protein. Significance was set at (p ≤ 0.05) and all data are 

represented as mean ± standard error. (B) MDA and HAE levels were 

evaluated as a combined marker of lipid peroxidation and expressed in 

µM[MDA/HAE]/mg protein.  YC= Young Control, YS = Young Suspended, 

OC = Old Control, OS = Old Suspended, YVC = Young Vehicle Control, 

YVCS = Young Vehicle Control Suspended, YRC = Young Resveratrol 

Control, YRS = Young Resveratrol Suspended, OVC = Old Vehicle 

Control, OVCS = Old Vehicle Control Suspended, ORC = Old Resveratrol 

Control, ORS = Old Resveratrol Suspended. **  p ≤ 0.05, non-suspended 

control vs. suspended animals (Suspension effect). # p ≤ 0.05, old vs. 
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young treatment matched (Aging effect). * p ≤ 0.05, vehicle control vs.  

age-matched and treatment matched groups (Effect of resveratrol). 

 

Figure 2.4 The effects of resveratrol administration and HLS on apoptotic 

signaling in young and old animals. (A) Bax protein content was 

determined via immunoblotting; a representative blot is shown (B) Bcl-2 

protein content was determined via immunoblotting; a representative blot 

is shown (C) Caspase 9 Activity was assessed using a fluorometric assay 

(D) Caspase 3 Activity was assessed using a fluorometric assay (E) Cell 

Death ELISA YC= Young Control, YS = Young Suspended, OC = Old 

Control, OS = Old Suspended, YVC = Young Vehicle Control, YVCS = 

Young Vehicle Control Suspended, YRC = Young Resveratrol Control, 

YRS = Young Resveratrol Suspended, OVC = Old Vehicle Control, OVCS 

= Old Vehicle Control Suspended, ORC = Old Resveratrol Control, ORS = 

Old Resveratrol Suspended. **p ≤ 0.05, non-suspended control vs. 

suspended animals (Suspension effect). # p ≤ 0.05, old vs. young 

treatment matched (Aging effect). *p ≤ 0.05, vehicle control vs.  age-

matched and treatment matched groups (Effect of resveratrol). 

 

Figure 2.5   Gastrocnemius muscle wet weight and plantar flexor maximal 

isometric force. The gastrocnemius muscles were dissected, 

immediately blotted and weighed as a gross estimation of muscle size and 

represented in grams (g, A), or as ratio to the animal’s body weight (mg/g, 
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B). Pre and post-HLS force measurements were assessed. Three 

isometric contractions were recorded per animal for both pre and post–

HLS assessments. The average of the three contractions at each time 

point was used to determine the decrease in isometric force output 

following HLS. The average force decrease with HLS (C) or the decrease 

in force normalized to body weight (D) demonstrates that resveratrol 

preserved loss of function in hindlimb muscles of the old rats. Significance 

was set at (p ≤ 0.05) and all data are represented as mean ± standard 

error. YC= Young Control, YS = Young Suspended, OC = Old Control, OS 

= Old Suspended, YVC = Young Vehicle Control, YVCS = Young Vehicle 

Control Suspended, YRC = Young Resveratrol Control, YRS = Young 

Resveratrol Suspended, OVC = Old Vehicle Control, OVCS = Old Vehicle 

Control Suspended, ORC = Old Resveratrol Control, ORS = Old 

Resveratrol Suspended. **p ≤ 0.05, non-suspended control vs. suspended 

animals (Suspension effect). # p ≤ 0.05, old vs. young treatment matched 

(Aging effect). *p ≤ 0.05, vehicle control vs.  age-matched and treatment 

matched groups (Effect of resveratrol). 
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Figure 2.1: Experimental Protocol. 
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Figure 2.2: Enzymatic activities and protein contents of CuZnSOD, MnSOD and          
catalase in response to aging and HLS. 
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Figure 2.3: Resveratrol attenuated increases in hydrogen peroxide (H2O2) 
concentration and lipid peroxidation associated with HLS in old animals.    
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Figure 2.4: The effects of resveratrol administration and HLS on apoptotic signaling in 
young and old animals. 
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Figure 2.5: Gastrocnemius muscle wet weight and plantar flexor maximal 
isometric force. 
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ABSTRACT  

 

This study analyzed the capacity of resveratrol, a naturally occurring polyphenol, to 

reduce aging-induced oxidative stress, and protect against sarcopenia.  Middle-aged 

(18mo) C57/Bl6 mice were randomly assigned to receive either a control diet or a diet 

supplemented with 0.05% trans-resveratrol for 10 months. Young (6mo) and middle-

aged (18mo) mice were used as controls. Resveratrol supplementation did not reduce 

the aging-associated loss of muscle mass or improve maximal isometric force 

production, but it appeared to preserve fast-twitch fiber contractile function. Resveratrol 

supplementation did not improve mitochondrial content, the subcellular localization of 

cytochrome c protein content, or PGC1 protein content. Resveratrol increased MnSOD, 

reduced H2O2, and lipid peroxidation levels in muscle samples, but it was unable to 

significantly reduce protein carbonyl levels.  The data suggest that resveratrol has a 

protective effect against aging-induced oxidative stress in skeletal muscle, likely through 

the upregulation of MnSOD activity, but sarcopenia was not attenuated by resveratrol. 

 

Key Words: Muscle atrophy-Oxidative stress—Sarcopenia—Mitochondria 

 

 

 
 
    



www.manaraa.com

95 
 

Introduction 

Advanced age leads to a loss of muscle mass and function, termed sarcopenia 

(64). The causative factors of sarcopenia are multifactoral, and include a progressive 

denervation of muscle fibers (21), an altered hormonal milieu (75), and a net loss of 

contractile proteins, (37; 57).  While no causal relationship has been established, 

skeletal muscle atrophy is often associated with an increased production of reactive 

oxygen species (ROS), (48; 49; 56), leading to an amplified oxidant-load.  An increase 

in oxidant exposure, in conjunction with the less effective endogenous anti-oxidant 

systems often present in aged animals (54; 58) can lead to oxidative stress. Chronic 

oxidative stress left unchecked over time leads to the oxidation, and thus damage, of 

cellular macromolecules, including lipids (53), nucleic acids (29) and proteins (11; 20; 

30). This progressive and cyclical oxidative assault on cellular macromolecules is 

believed to be an important contributor to the aging process (25) and is thought to be 

responsible for many of the pathologies associated with aging, including genomic 

instability, mitochondrial dysfunction and chronic inflammation (25; 26), all of which are 

associated with sarcopenia (13). 

Supplementation with the naturally occurring phytoalexin, resveratrol (3,4',5-

trihydroxystilbene), has recently been shown to protect against oxidative stress in 

rodent skeletal muscle (32; 67)  and to act as a systemic anti-inflammatory agent in vivo 

(24). Specifically, in skeletal muscle, resveratrol has been shown to upregulate 

components of the endogenous antioxidant system (32; 67), reduced the oxidant load 

within the muscle environment and consequently attenuate oxidative damage 

associated with muscle loading (67), unloading (32) and aging (32; 67).  Furthermore, 

resveratrol administration was able to significantly mitigate muscle atrophy in a mouse 
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model of cachexia (80). Resveratrols’ ability to directly scavenge free radicals resides in 

its phenol ring and resveratrol has repeatedly been shown to be a potent scavenger of 

reactive oxygen species (ROS) in numerous cell types exposed to oxidants (12; 36; 47; 

62).  However, its rapid first pass metabolism in mammals and thus relatively low 

bioavailability (19; 23; 46), may limit its role as a direct ROS scavenger in vivo. 

Consequently, in vivo, resveratrols’ various health benefits can more likely be attributed 

to its ability to activate the NAD+ dependent deacetylase, silent mating type information 

regulation homolog1, or sirtuin1 (Sirt1) (2; 40).  

Sirt1 has been shown to play a role in a variety of important physiological 

functions including inflammation (24), mitochondrial biogenesis (40) and the regulation 

of oxidative stress and anti-oxidant enzymes (27; 39)  in a wide array of cell types (38; 

40; 51; 78). Sirt1 is also activated with exercise (74) and under conditions of nutrient 

deprivation (14; 79), underscoring resveratrols effectiveness as a caloric restriction 

mimetic. These conditions in which Sirt1 activation is elicited are significant because 

both exercise (71; 73) and caloric restriction (7; 14; 41)  are proven countermeasures to 

combat both oxidative stress and sarcopenia.  Furthermore, Sirt1 is a powerful positive 

mediator of PPARγ co-activator (PGC-1α) (76), which is considered to be the master 

regulator of mitochondrial function and biogenesis (43).  PGC-1α is decreased during 

atrophic conditions (68; 69) and muscle specific over expression of PGC-1α confers 

protection against both denervation and fasting-induced skeletal muscle atrophy (69).  

Increases in PGC1 signaling have the potential to alleviate age-related mitochondrial 

alterations which underlie a wide variety of diseases such as diabetes (45), 

neurodegeneration (70) and sarcopenia (13).  
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Although mitochondria are not the sole source of ROS within a cell, they are 

routinely viewed as the principle site of superoxide generation, which is the primary 

source of damaging ROS within muscle cells (33; 34). Resveratrol’s ability to increase 

PGC1 signaling, via Sirt1 activation, could potentially provide a two-fold mechanism with 

which to protect aged skeletal muscle against oxidative stress. Firstly, resveratrol has 

been shown to act as a direct and indirect anti-oxidant diminishing the likelihood of 

phospholipid oxidation and thus damage within the mitochondrial membrane preserving 

the integrity of the membranes and thus preventing “leaky” mitochondria. In addition, 

resveratrol has been shown to promote mitochondrial biogenesis in skeletal muscle in a 

Sirt1 dependent fashion (40) thus potentiating the possibility to replace damaged 

mitochondria in aged animals.  

Acute resveratrol administration has been recently shown to reduce oxidative 

stress and improve functional outcomes in rodent skeletal muscle (32; 67); however, the 

efficacy of chronic resveratrol supplementation as a counter-measure to combat 

sarcopenia has not been established. Thus, the purpose of the current investigation was 

to determine if long-term dietary supplementation, from middle-age through 

senescence, with moderate doses of resveratrol would effectively attenuate the loss of 

muscle mass and function that occurs in aged animals. It was hypothesized that 

resveratrol’s ability to activate Sirt1 would consequently enhance the endogenous anti-

oxidant system and increase PGC1 signaling, thereby reducing the release of ROS from 

mitochondrion. Furthermore, it was hypothesized that resveratrol supplementation 

would maintain muscle function in aged animals both by preservation of muscle mass 

and by providing a more favorable redox environment  
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Methods        

 

Experimental Protocol.  Experiments were conducted on young adult (3 mo), middle-

aged (18 mo) and aged (28 mo) C57BL/6 mice obtained from the National Institute on 

Aging colony (Harlan, Indianapolis, IN). The mice were housed in pathogen-free 

conditions at ~20oC. All mice had free access to food and water. Middle-aged mice were 

put on either a control diet of normal mouse chow, (AIN-76A Rodent Diet, Research 

Diets Inc, New Brunswick, NJ), or an identical diet containing 0.05% resveratrol 

(Research Diets Inc, New Brunswick, NJ). Resveratrol was purchased from Orchid 

Pharmaceuticals (India).  Mice of 3 mo and 18 mo of age were used as control animals 

only. Aged animals were sacrificed at 28 months after 10 months of being on either the 

control, or resveratrol-supplemented diet. Immediately following sacrifice, skeletal 

muscles were dissected for use in either biochemical analyses, mitochondrial isolation 

and/or physiological analyses. All experimental procedures carried approval from the 

Institutional Animal Use and Care Committee from West Virginia University School of 

Medicine.  

 

Ex vitro muscle physiological analysis. Isometric muscle contractile properties were 

examined in the plantaris muscles of control and resveratrol-treated mice. The muscles 

were placed in an oxygenated ringers solution (in mM: 137 mM NaCl, 4.7mM KCl, 

3.4mM CaCl2, 1.2mM MgSO4  1 NaH2PO4, and 112 D-glucose). The Ringer solution 

was aerated with 95% O2 and 5% CO, (pH 7.4). The temperature of the solution was 

kept at 20°C. The distal end of the muscle was attached to a stationary plexiglass plate, 
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and the proximal end was fixed to the lever arm of a 300C dynamometer (Aurora 

Scientific, Aurora Ontario, Canada). The muscles were stimulated by passing a constant 

current through platinum plates that were positioned on either side of the muscle.   Ex 

vivo isometric twitch and tetanic contractions were obtained using a Constant 

Current/Constant Voltage Stimulator (Aurora Scientific) that provided DC-square wave 

signals at stimulation current of 12 Volts, with a 200 µs pulse width. Muscles were 

adjusted to the optimal muscle length (Lo) by a micromanipulator that controlled the 

base position of the electrode clamp. Lo was established as the muscle length that 

produced maximal isometric twitch tension. Lo was periodically checked by the same 

procedure throughout each experiment.  Force-frequency isometric force records were 

obtained by stimulating the muscle at 10, 20, 40, 50, 75 and 100 Hz, with 3 minutes of 

rest between each contraction.  Physiological contractile measures included peak 

isometric twitch force (PT), time to peak twitch contraction tension (CT), ½ relaxation 

time of twitch contraction (½ RT), and peak isometric tetanic force (Po), as previously 

described  (3; 4).  Following isometric contractions, the muscles remained in 

oxygenated Ringers for 5 minutes prior to the repeated stimulation fatigue protocol. 

Muscle fatigue was assessed by stimulating the muscle at 40Hz for 3 minutes with a 

duty cycle of  330 ms of stimulation followed by 660 ms of rest (15).  The fatigue index 

was calculated as the difference in force from the average of the first three contractions 

to the average of the final three contractions. The contractile and fatigue measurements 

were analyzed off line using commercial software (DMI, Aurora Scientific). 

Protein Isolation.  Approximately 40 µg of gastrocnemius muscle from each animal 

was homogenized in 500 μL of RIPA buffer (1% Triton x-100, 150mM NaCl, 5mMEDTA, 
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10mM Tris; pH: 7.4) using a mechanical homogenizer, for use in the assessment of 

protein expression via immunoblotting. Muscle homogenates were then centrifuged at 

1000 x g for 5 minutes at 4°C. The resulting supernatant was collected and divided into 

two portions and frozen at –80°C  either with, or without a protease inhibitor cocktail 

containing 104 mM 4-[2-aminoethyl]-benzenesulfonyl fluoride hydrochloride, 0.8 mM 

aprotinin, 2 mM leupeptin, 4 mM bestatin, 1.5 mM pepstatin A, and 1.4 mM E-64 

(Sigma-Aldrich, St. Louis, MO) added to it. 

For all enzyme activity assays, and/or oxidative damage assessments muscle 

samples were homogenized in the appropriate volume of either PBS, or the kit specific 

buffer provide by the manufacturer. Protein concentrations for each sample were 

determined in duplicate using the DC Protein Assay kit (Bio-Rad, Hercules, CA).  

Mitochondrial isolation. The vastus lateralis muscles were carefully removed while the 

mice remained under deep anesthesia (5% isoflurane / 95% oxygen). Precautions were 

made to assure that the blood supply to the muscles remained intact until it was 

removed to prevent the artificial accumulation of oxidants. Mitochondria and 

mitochondria free cytosolic muscle fractions were obtained using a commercially 

available mitochondrial isolation kit specifically designed for animal tissue (MITOISO1-

1KT, Sigma-Aldrich Co., St Louis, MO). The fractions were obtained using sequential 

separation steps involving a protease digestion followed by separation of the fractions 

via centrifugation using slight modifications of the manufacturer’s recommendations. 

Briefly, the gastrocnemius muscle was placed on ice and minced in a 1.5ml eppendorf 

tube. Samples were washed and re-suspended in an extraction buffer containing 0.25 



www.manaraa.com

101 
 

mg/ml trypsin. After a 20 minute incubation period, albumin was added to a final 

concentration of 10 mg/ml to quench the proteolytic reaction. Samples were then 

washed and re-suspended in extraction buffer and then gently homogenized with a 

Teflon pestle. The homogenate was then centrifuged at 600 x g for 5 minutes. The 

supernatant was transferred to a new tube and centrifuged at 11,000 x g for 10 minutes 

and transferred to a new tube. The supernatant was centrifuged for 10min at 11,000 x g 

and transferred to a new tube to assure a clean mitochondrial free cytosolic fraction. 

The mitochondrial pellet was suspended in a sucrose storage buffer.  

Manganese Superoxide Dismutase (MnSOD) and Copper-Zinc Superoxide 

Dismutase (CuZnSOD) Enzyme Activity Levels.  Superoxide dismutase activity was 

measured in vastus lateralis muscle homogenate that was partitioned into a 

mitochondrial pellet and mitochondrial-free cytosolic fraction. Enzymatic activity was 

assessed using a colorimetric enzyme activity kit (Cayman Chemical Company Ann 

Arbor, MI) following the manufacturer’s guidelines. CuZnSOD activity was obtained from 

the cytosolic fractions and MnSOD activity was measured using isolated mitochondria. 

All samples and standards were measured in duplicate.  The assay was performed in a 

96-well plate and mitochondrial samples were treated with 10µL of 12 mM potassium 

cyanide to inhibit any residual CuZnSOD activity. The absorbance of the resulting 

colorimetric changes were measured at a wavelength of 450 nm using a 96-well plate 

reader (Dynex Tech., Chantilly VA., USA).  The samples were normalized to the protein 

concentration in each sample as assessed using a DC protein concentration assay (Bio-

Rad, Hercules, CA).  
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Immunoblots. The protein content of CuZnSOD and MnSOD were measured in vastus 

lateralis total muscle homogenate. Cytochrome C protein content was measured in the 

cytosolic (mitochondrial free) fraction of the vastus lateralis muscle, the corresponding 

mitochondrial fractions and total muscle homogenate.  The protein content of Sirt1 and 

PGC-1 were measured in gastrocnemius total muscle homogenates. β-tubulin was used 

as a loading control for cytosolic fractions and total homogenate. A ponceau stain was 

used to validate equal loading of the mitochondrial fraction.  Thirty to forty micrograms of 

protein were loaded into each well of a 4%–12% gradient polyacrylamide gel (Invitrogen, 

Carlsbad, CA) and separated by routine sodium dodecyl sulfate–polyacrylamide gel 

electrophoresis (SDS–PAGE) for approximately 1.5hrs at 20°C, followed by transfer to a 

nitrocellulose membrane for 70-120 min at 35V. All membranes were blocked in 5% 

nonfat milk (NFM) for 1 hour at room temperature.  Membranes were then incubated in 

the appropriate primary antibodies, overnight at 4°C. Primary antibodies were diluted in 

Tris-buffered saline, with 0.1% Tween-20 (TBST) and 10% sodium azide. Membranes 

were then washed in 0.05% TBST followed by incubation in the appropriate dilutions of 

secondary antibodies (diluted in 5% NFM in TBST) conjugated to horseradish 

peroxidase. Signals were developed using a chemiluminescent substrate (Lumigen 

TMA-6; Lumigen, Southfield, MI) and visualized by exposing the membranes to X-ray 

films (BioMax MS-1; Eastman Kodak). Digital records were captured by a Kodak 290 

camera, and protein bands were quantified using 1D analysis software (Eastman 

Kodak). Bands were quantified as optical density x band area and expressed in arbitrary 

units.  
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Sirt1 Activity. Sirt1 activity was measured using components of the Sirt1 Fluorimetric 

Drug Discovery Kit (BIOMOL, Plymouth Meeting, PA # AK -555). In short, endogenous 

Sirt1 activity was measured in total gastrocnemius muscle homogenates homogenized 

in ice-cold PBS (pH =8.0) using the fluorescent deacetylase substrate and developer 

provided in the kit. Following homogenization each sample was quantified using a DC 

protein concentration assay (Bio-Rad, Hercules, CA) and diluted to 2.5 µg/µL using the 

kit supplied assay buffer.  The fluorescent substrate in conjunction with 100 µM of the 

co-substrate NAD+ was incubated with 25 µL of each sample for 30 minutes at RT in a 

½ volume 96 well white microplate. Following this incubation 2mM Nicotinamide (Sirt1 

inhibitor) and the provided fluorescent developer were added to each well to stop the 

reaction and produce a fluorophore that is linearly related to Sirt1 activity. Resveratrol 

and Suramin were combined with the provided recombinant Sirt1 and were used as 

positive and negative controls respectively. Additionally, a mouse liver homogenate was 

used as an additional positive control. The intensity of the fluorescent signal was 

detected using an excitation wavelength of 360 nm and an emission wavelength of 460 

nm. Data are presented as fluorescent units normalized to the milligrams of protein 

present in each homogenate. 

 

Citrate Synthase Activity. Citrate synthase activity was measured in gastrocnemius 

whole tissue extracts using a commercially available kit (CS0720 Sigma-Aldrich, Saint 

Louis, MO). Citrate synthase activity has been extensively used as a marker of 

mitochondrial mass (40; 59)  and is a suitable marker for use in whole muscle 

homogenate given that it’s located in the mitochondrial matrix; the enzyme’s activity 
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would be minimally affected by the homogenization procedure. Muscle samples were 

homogenized in ice-cold CelLytic MT Cell Lysis Reagent (C3228) and the resultant 

homogenate was centrifuged at 12,000 x g for 10 minutes to remove cellular debris. The 

resulting supernatant was used for the kinetic assessment of citrate synthase activity. 

The assay was performed in a 96 well plate as per manufactures instructions. Briefly, 

8µL of each muscle homogenate was added to a master mix containing the supplied 

assay buffer, 30mM Acetyl CoA solution and 10mM DTNB solution. The reaction was 

initiated with the addition of 10µL of oxaloacetic acid and the formation of citric acid was 

determined spectrophotometrically at a wavelength of 412nm at an interval of 

90seoncds for 10minutes.  Net citrate synthase activity was calculated as the 

endogenous citrate synthase activity subtracted from total activity. All analyses were 

measured in duplicate and the samples were normalized to µg of protein per μL of 

muscle homogenate as determined by the DC Protein Assay Kit (Bio-Rad Hercules, 

CA). 

 

Hydrogen Peroxide (H2O2) Content.  H2O2 content in gastrocnemius muscle 

homogenate was measured using a fluorescent assay according to the manufacturer’s 

recommendations (Cell Technology, Mountain View, CA). Briefly, 50 μL of control, 

unknown muscle samples, or H2O2 standards were mixed with 50 μL of the reaction 

cocktail provided in the kit and added to each well to initiate the reaction. The plate was 

then incubated in the dark for 10 minutes at room temperature. The intensity of the 

fluorescent signal was detected using an excitation wavelength of 530 nm and an 

emission wavelength of 590 nm. A linear regression was performed by plotting the 
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resultant florescent intensities from the known standards and subsequently the 

unknown samples were fit to the corresponding linear equation. All analyses were 

measured in duplicate and the samples were normalized to µg of protein per μL of 

muscle homogenate as determined by the DC Protein Assay Kit (Bio-Rad Hercules, 

CA). 

Lipid Peroxidation. Malondialdehyde (MDA) and 4-hydroxyalkenals (HAE) were 

measured using the methods and reagents from Oxis International, CA (BIOXYTECH 

LPO-586). Approximately 50 mg of gastrocnemius muscle was homogenized in 750 μL 

of ice cold buffer containing phosphate-buffered saline (20 mM, pH 7.4) and 5 μL of 0.5 

M butylated hydroxytoluene in acetonitrile per 1 mL of tissue homogenate. Assay 

reagents were added following the manufacturer's recommendations and have been 

previously described by our laboratory (66). Briefly, the muscle homogenate was 

centrifuged at 3000 x g at 4°C for 10 minutes, and the supernatant was carefully 

collected and used to quantify lipid peroxidation. The supernatant was subsequently 

incubated in the proper reagents at 45°C for 60 minutes, as per the manufactures 

instructions, and then centrifuged at 15,000 x g for 10 minutes. The absorbance of the 

resulting sample was read at 586 nm. All analyses were measured in duplicate and the 

samples were normalized to µg of protein per μL of total gastrocnemius muscle 

homogenate as determined by the DC Protein Assay Kit (Bio-Rad Hercules, CA). 

Protein Carbonyls.  A colorimetric protein carbonyl assay kit (#10005020 Cayman 

Chemical Company, Ann Arbor, MI) was used to determine the level of protein oxidation 

in gastrocnemius muscle homogenates. All procedures were carried out according to 
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the manufactures guidelines. In brief, ~50mg of gastrocnemius muscle was 

homogenized in ice-cold PBS (pH = 6.7) containing 1mM EDTA and subsequently 

centrifuged for 10,000 x g for 15min at 4°C to obtain a clear supernatant. 400 µL of the 

supernatant was subsequently transferred to two separate tubes, one to be used as a 

background control and one to be used to asses protein carbonyl formation. 2,4-

dinitrophenylhydrazine was added to the sample tube and 2.5 M hydrochloric acid was 

added to each control tube. Both tubes were then incubated in the dark for 1 hour at 

room temperature. Following this incubation 20 % trichloroacetic acid was added to all 

tubes and then briefly placed on ice. The samples were then exposed to a series of 

sequential acid incubations, centrifugations and wash steps as per the manufactures 

directions. After the final wash the pellets were re-suspended in guanidine hydrochloride 

and transferred to the wells of a 96 well plate. The absorbance change was then 

measured at a wavelength of 360nm using a plate reader. Following the readings all 

samples were quantified using a DC protein concentration assay (Bio-Rad, Hercules, 

CA) and the results are presented as nmols of protein carbonyls normalized to the µg of 

protein present in each sample. 

 

Statistics.  Statistical analyses were performed using the SPSS 13.0 software package 

(SPSS, Chicago, IL). An analysis of variance was used to examine differences between 

the three age groups and additionally resveratrol supplementation. Bonferroni post hoc 

analyses were performed between significant means.  A p value < 0.05 was considered 

statistically significant. Data are reported as mean ± standard error of the mean. 
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RESULTS  

 

Descriptive Data. All animals were weighed at the beginning and end of the 

experimental protocol. The data displayed in Table 1 are indicative of the final weight of 

the animals immediately prior to sacrifice. There was no significant difference between 

the body weights of aged control vs. aged resveratrol supplemented animals. Middle-

aged and both aged animal groups were significantly heavier than young animals (34.3 

± 2.3g vs. 34.5 ± 3.9g vs. 26.5 ± 2.1g; p ≤ 0.05). There was no significant effect of 

resveratrol administration on body weight within aged animals. Conversely, both 

gastrocnemius and plantaris muscle wet weights were significantly greater in young 

animals compared to aged and middle-aged animals. The difference was even more 

prominent when muscle wet weights were normalized to their body weights, (Table 1). 

These results are indicative of sarcopenia; however, resveratrol showed no protective 

effect with regard to maintaining muscle mass during aging in either the plantaris, or 

gastrocnemius muscles. 

 

Refer to Table 1 

 

Silent mating type information regulation homolog1, (Sirt1) Enzyme Activity and 

Protein Content. Surprisingly, Sirt1 Activity was significantly  greater  by  25% in 

gastrocnemius muscles from aged animals, compared to their young counterparts. 

Gastrocnemius muscles from resveratrol supplemented animals had a modest, but 

additional increase in Sirt1 activity (2867 ± 108 vs. 3243 ± 107 AFU/µg), (Figure 1A). 
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Sirt1 protein content, as measured by immunoblotting, was similarly greater in muscles 

from aged animals, although to a much larger extent than the activity levels. Muscles 

from aged animals showed, more than a two-fold greater Sirt1 protein content 

compared to muscles from young animals. Resveratrol supplementation did not 

significantly increase Sirt1 protein content in muscles of middle-aged animals, although 

the results approached statistical significance (p= .063), (Figure 1B). 

 

Refer to Figure 1 

 

Peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) Protein 

Content and Citrate Synthase Enzyme Activity. PGC1 protein content and citrate 

synthase activity were measured as indirect markers of oxidative metabolism and 

mitochondrial content, respectively. PGC1 protein content measured in total 

gastrocnemius muscle homogenate remained unchanged regardless of age, or 

resveratrol supplementation, (Figure 2A). Citrate synthase activity was  ~20% lower in 

muscles from aged animals,  but resveratrol supplementation had no effect on the 

enzyme’s activity (Figure 2B). 

 

Refer to Figure 2 

 

Subcellular Localization of Cytochrome c Protein. Cytochrome c protein content 

was measured, via immunoblotting, in the total, cytosolic (mitochondrial-free), and 

mitochondrial fractions of vastus lateralis muscles as an estimation of both 
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mitochondrial content and mitochondrial membrane permeability. Cytochrome c protein 

content in both the total homogenate and the mitochondrial fractions, remained 

unchanged regardless of age or resveratrol supplementation (Figure 3A). Cytochrome c 

present in the mitochondrial free cytosolic fraction was ~ 10 fold greater in muscles from 

both middle-aged and aged animals regardless of resveratrol supplementation, 

suggesting increased mitochondrial membrane permeability and perhaps an increased 

likelihood of mitochondrial dysfunction present in middle-aged and aged animals (Figure 

3A).  

 

Refer to Figure 3 

 

 

SOD Enzyme Activity and Protein Content. Superoxide dismutase activity was 

measured in vastus lateralis muscles fractioned into mitochondrial and cytosolic 

(mitochondrial-free) fractions. MnSOD activity was assessed in isolated mitochondria 

and CuZnSOD activity was measured in the corresponding mitochondrial free cytosolic 

faction. Total homogenates from the vastus lateralis muscle was used to determine the 

protein content of each SOD isoform. MnSOD activity was similar  in mitochondria 

isolated from vastus lateralis muscles from middle-aged and aged animals relative to 

young muscles. Resveratrol supplementation increased MnSOD activity in muscles 

from aged animals by an additional ~40%, (Figure 4A). There was no aging, or 

supplementation effect on MnSOD protein content (Figure 4B). CuZnSOD activity was 

significantly increased in gastrocnemius muscles from old animals compared to 
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gastrocnemius muscles from young animals (121 ± 6.3 vs. 73.8 ± 6.6 U/ml/mg; p ≤ 

0.05). Resveratrol supplementation significantly decreased CuZnSOD activity in aged 

animals, by 33%, reducing the enzymes activity level to that of young animals (Figure 

4C). There was no change in CuZnSOD protein content with resveratrol 

supplementation, however, aging significantly increased CuZnSOD protein content in 

both middle-aged and aged animals compared to their young counterparts, (Figure 4D). 

 

Refer to Figure 4 

 

Hydrogen Peroxide (H2O2) Concentrations.  H2O2 was assessed in gastrocnemius 

muscle homogenates as an indicator of oxidant load during aging. H2O2 levels were 

~80% higher in gastrocnemius muscles from aged and middle-aged animals when 

compared to gastrocnemius muscles from young animals, (1.88 ± 0.11 vs. 1.80 ± 0.25 

vs. 1.05 ± 0.12 μmols H2O2 /μg protein; p ≤ 0.05).  Resveratrol supplementation 

significantly reduced H2O2 levels in gastrocnemius muscles from aged animals 

compared to gastrocnemius muscles from old control animals, (1.52 ± 0.10 vs. 1.88 ± 

0.11 μmols H2O2 /μg protein; p ≤ 0.05). This reduction represented a 24% decrease in 

H2O2 concentrations, but muscles from aged resveratrol animals still had significantly 

higher levels of  H2O2 when compared to young muscles (Figure 5A). 

 

Lipid Peroxidation. Malondialdehyde (MDA) and 4-hydroxyalkenals (HAE) were 

assessed in whole muscle homogenates as indicators of oxidative damage, specifically 

as markers of muscle lipid peroxidation. Lipid peroxidation was increased in aged 
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animals compare to their young counterparts (0.251 ± 0.04 vs. 0.442 ± 0.05 µM 

[MDA/HAE]/mg protein; p ≤ 0.05). Muscles from middle-aged animals did not show 

elevated markers of lipid peroxidation when compared to muscles from young animals. 

Resveratrol supplementation was able to partially attenuate the increase in lipid 

peroxidation that occurred due to aging. Gastrocnemius muscles from aged 

supplemented animals had a 20% reduction in MDA and HAE levels compared to aged 

control animals (0.354 ± 0.02 vs. 0.442 ± .05 µM [MDA/HAE]/mg protein; p ≤ 0.05), 

(Figure 5B). 

 

Protein Oxidation.  Protein carbonyl formation was measured in gastrocnemius muscle 

homogenates as an indicator of protein oxidation caused by oxidative stress. Muscles 

from both aged and middle-aged animals showed significantly greater concentrations of 

protein carbonyl formation compared to muscles from their young counter parts (7.43 ± 

1.3 vs. 7.10 ± 1.2 vs. 4.63 ± .67 nmol/ml/µg; p ≤ 0.05). Resveratrol supplementation was 

unable to mitigate protein oxidation in aged animals as measured by carbonyl formation  

(Figure 5C). 

 

Refer to Figure 5 

 

Ex Vitro Physiological Analyses. Isometric muscle contractile properties were 

examined in the plantaris muscles of control and resveratrol-treated mice (Figure 6). 

The force frequency curve was shifted significantly rightward in resveratrol 

supplemented aged mice, compared to aged control mice (Figure 6A). This rightward 
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shift is indicative of a faster muscle profile. These results were completely unexpected 

given that previous literature has shown that dietary resveratrol supplementation 

improves muscular endurance (40) and increases mitochondrial biogenesis in skeletal 

muscle (6; 40) which would likely shift the force frequency curve leftward to represent a 

slower muscle profile. Additionally, CT and ½ RT were analyzed to determine if 

resveratrol had any effect on the twitch properties of plantaris muscles, (Figure 6B). 

Plantaris muscles from middle-aged animals had a significantly shorter contraction 

times than did muscles from aged control animals, (32.8 ± 2.1 ms vs. 39.6 ± 1.4 ms; p ≤ 

0.05). Similarly, muscles from resveratrol supplemented animals also showed shortened 

contraction times compared to aged control animals (34.7 ± 0.8 ms vs. 39.6 ± 1.4 ms; p 

≤ 0.05), eliminating any aging effect between middle-aged and aged resveratrol 

supplemented animals. These data are consistent with the rightward shift in the force 

frequency curve of muscles from resveratrol supplemented animals (Figure 6.A). No 

differences were found in the ½ RT (Figure 6.B), or the twitch to tetanus ratio (Pt/Po) of 

plantaris muscles with respect to age or resveratrol supplementation, (Figure 6C). 

Lastly, a modified Burke protocol (10) was implemented to assess muscle fatigue in 

plantaris muscles. The fatigue protocol consisted of 3 minutes of 120 electrically evoked 

contractions at 40 Hz. Each contraction was for 1.0s with a 33.3% duty cycle. The pulse 

duration was 200 µs. There was no difference between the fatigue index of middle-aged 

and aged control animals and furthermore, resveratrol was unable to improve fatigue 

resistance in plantaris muscles (Figure 6D).   

 

Refer to Figure 6 
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DISCUSSION 

Oxidative stress is believed to be a common underlying mechanism potentiating 

many of the factors leading to muscle loss with aging (22; 56). There appears to be 

inherent alterations in the endogenous antioxidant defense systems that occur with 

aging in skeletal muscle (54; 58). Although there is an incongruence in the literature as 

to whether antioxidant enzyme activities increase, or decrease, with aging; there is an 

abundance of evidence suggesting that the antioxidant defense system in aged 

individuals can be more easily overwhelmed by oxidants leading to oxidative stress and 

consequent oxidative damage (53; 65; 72). Increased oxidant production and/or an 

attenuated capacity to buffer oxidants may result in reductions in muscle function due to 

both muscle atrophy and also functional decrements that go beyond the linear 

relationship between muscle cross-sectional area and force generation (16; 31; 61). 

Given that the definition of sarcopenia is the loss of muscle mass and function with 

aging, (64) it stands to reason that there may be a possible link between increases in 

oxidative stress with aging and the progression of sarcopenia.  

The source of increased ROS present in aged skeletal muscle most likely 

originates in the mitochondria. Age-related mitochondrial alterations underlie a wide 

variety of diseases such as diabetes (45), neurodegeneration (70) and sarcopenia (13). 

The premise behind this relationship is based on the theory that with advanced age 

there are more dysfunctional mitochondria present within a cell (44). These defective 

mitochondria contain “leaky” electron transport chains and thus more oxidants are 

produced leading to oxidative stress (13; 28). The process is cyclic; with more 
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mitochondrial uncoupling, there are more pro-oxidants present to further damage 

vulnerable membrane phospholipids (28; 53). Consequently mitochondrial derived 

superoxide generation increases with advanced age (50).  

 Supplementation with the naturally occurring polyphenol, resveratrol, has the 

potential to alleviate oxidative stress in aged skeletal muscle via activation of Sirt1, by 

favorably augmenting endogenous anti-oxidant enzymes (27; 39) and enhancing 

mitochondrial function (40) and biogenesis (6). The present study sought to determine 

the efficacy of long-term resveratrol supplementation to alleviate oxidative stress from 

middle-age through senescence and to attenuate the progression of sarcopenia. 

 As expected, sarcopenia was present in both plantaris and gastrocnemius 

muscles from aged animals (Table1). Interestingly, although muscles from middle-aged 

animals were also significantly heavier than muscles from aged animals, when 

normalized to bodyweight, muscles from middle-aged animals already showed a relative 

decrease in muscle mass when compared to muscles from young animals. Counter to 

our hypothesis, resveratrol supplementation was not able to attenuate the loss of 

muscle mass or relative muscle mass in aged animals, nor did dietary resveratrol 

supplementation affect animal body weight (Table1). 

Resveratrol supplementation moderately, but significantly, enhanced Sirt1 activity   

(Figure 1A) in gastrocnemius muscles from aged animals compared to muscles from 

animals on the control diet. There was a tendency for Sirt1 protein levels to be elevated 

by dietary resveratrol supplementation, however, these results did not reach statistical 

significance (p=0.063) (Figure 1B) and this is congruent with literature showing that 

supplementation with resveratrol primarily acts via increasing Sirt1 activation, not 
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protein content (6). Somewhat unexpectedly, both Sirt1 activity and protein levels 

increased with aging (Figure 1A-B). We had originally theorized that Sirt1 activity would 

be decreased in aged animals in light of the fact that upregulation of Sirt1, with 

resveratrol, can protect against certain facets of aging (5; 55). However, Sirt1 has 

recently been found to be upregulated in heart muscle in response to both exogenous 

stress and aging (1), suggesting that Sirt1 is elevated in muscles of aged animal and 

likely represents an attempt to confer protection against endogenous and exogenous 

stressors. These results are in agreement the findings of the current study. 

Nevertheless, this elevation in Sirt1 protein and activity was insufficient to protect 

skeletal muscle against sarcopenia. 

Sirt1 is a known positive regulator of PGC1 (63) and as such has the potential to 

influence pathways involved in mitochondrial biogenesis and oxidative metabolism. 

Long-term resveratrol supplementation did not increase total PGC1 protein content in 

aged gastrocnemius muscles, nor did total PGC1 protein content change with aging 

(Figure 2 A). Given that total PGC1 protein levels may not be sensitive to changes in 

the actual functional capacity of PGC1, the enzymatic activity of citrate synthase was 

also analyzed as a marker of oxidative metabolism and mitochondrial content. Citrate 

synthase activity was similarly unaffected by resveratrol supplementation, however, 

citrate synthase activity was sensitive to age-related alterations and was significantly 

decreased in aged animals, (Figure 2B). Congruent with the results of the citrate 

synthase assay, cytochrome c release from the mitochondria was increased in muscles 

from aged and middle-aged animals, but was not ameliorated with resveratrol 

supplementation, (Figure 3A). It should be noted that in the current investigation the 
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subcellular localization of cytochrome c was used as an indicator of mitochondrial 

membrane integrity and content, although traditionally cytochrome c release is used as 

a hallmark of apoptosis (1) . Taken as a whole, these data seem to indicate that 

although Sirt1 activity was enhanced with resveratrol supplementation, it was not 

increased enough to enhance PGC1 signaling and thus had no measurable influence 

on mitochondrial membrane integrity, mass, or metabolism. 

Long-term resveratrol supplementation was successful at mediating endogenous 

antioxidant enzymes and markers of oxidative stress and oxidative damage in muscles 

from aged animals. Specifically, resveratrol administration significantly increased 

MnSOD activity, while having an opposing effect on CuZnSOD activity by significantly 

decreasing it in vastus lateralis muscles, (Figure 4A & C). On the other hand, resveratrol 

supplementation did not alter either SOD isoform at the protein level (Figure 4 B & D).  

The ability of resveratrol to induce MnSOD is commonly accepted and it is believed that 

resveratrol augments Sirt1 activity which in turn upregulates MnSOD in a FOXO3a 

dependent manner (77). Acute resveratrol supplementation has previously been shown 

to enhance MnSOD at both a gene (67) and protein (32) level in addition to enhancing 

the enzyme’s activity, suggesting that there may be differential signaling with regard to 

MnSOD regulation between acute and chronic exposure to resveratrol. CuZnSOD 

activity is known to be increased with aging and in other conditions eliciting elevated 

levels of oxidative stress (35), so it seems plausible that resveratrol’s ability to reduce 

the muscle’s oxidant load by reducing of H2O2 concentrations (Figure 5 A) may have 

prevented the aging-induced increase in CuZnSOD activity, resulting in a younger 

antioxidant profile.  
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The reduction of H2O2 concentrations in gastrocnemius muscles from aged 

animals supplemented with resveratrol appears to have assuaged the accumulation of 

the lipid peroxidation byproducts Malondialdehyde (MDA) and 4-hydroxyalkenals (HAE). 

This is consistent with recent data from our laboratory and others that have shown that 

resveratrol protects against H2O2  mitigated lipid peroxidation in vivo (32; 67) and in vitro 

(9). Although the muscle oxidant load (H2O2) was reduced and the level of lipid 

peroxidation was attenuated in aged gastrocnemius muscles, resveratrol 

supplementation was unable to protect skeletal muscle from aging-induced protein 

oxidation as measured by protein carbonyl formation (Figure 5C). This observation 

differs from recent rodent studies in both diabetic (52) and cancer (8) models showing 

that resveratrol was able to diminish protein oxidation in vivo. It is probable that the 

results of the current study are more representative of the effects that resveratrol can 

have under basal conditions in aged animals and it may prove to be more protective 

under perturbations that involve excessive stress such as disease states and/or injuries 

resulting in chronic inflammation, or under muscle wasting conditions such as cachexia 

or hindlimb suspension.  

Given that resveratrol supplementation has been shown to improve muscular 

endurance (40) and increase mitochondrial biogenesis in skeletal muscle (6; 40), it was 

conjectured that the primarily fast twitch plantaris muscles from supplemented animals 

would show an  improved resistance to fatigue. Presumably these muscles would show 

a shift in muscle characteristics that would be more in line with a slower muscle 

phenotype. This did not turn out to be the case, and in fact, resveratrol supplementation 

not only conferred no protection against muscle fatigue (Figure 6D), it in fact shifted the 
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force-frequency curves of the plantaris muscles rightward (Figure 6A), indicating that 

the muscles had properties more consistent with a faster phenotype. One possible 

explanation for this phenomenon is that resveratrol supplementation, by retarding 

oxidative stress and damage, may have prevented the atrophy and/or loss of type II 

fibers that is known to occur in aged skeletal muscle (42) and thus was able to preserve 

a younger muscle profile. It is also possible, although not addressed in the current 

study, that resveratrol could improve the capacity of aged muscles to regenerate. In a 

recent study, resveratrol stimulated muscle precursor cell proliferation in a Sirt1- 

dependent manner (60), further expanding the mechanisms by which resveratrol 

supplementation may improve muscle mass and function by enhancing muscles 

regenerative capacity, which has been shown to be augmented with aging (17; 18) and 

in certain pathological conditions.  

Taken as a whole, the results of the current study indicate that long-term dietary 

supplementation with moderate doses of resveratrol may prove to be beneficial by 

upregulating MnSOD and thus reducing the oxidant load present in the skeletal muscle 

environment and hence preventing some measures of oxidative damage. However, the 

current experimental protocol proved to be insufficient to enhance mitochondrial 

integrity or content. It is possible that a greater increase in Sirt1 protein and/or activity 

may be needed before a change in mitochondrial function will be observed. Further 

work is needed to determine if resveratrol has the potential to be an effective 

therapeutic agent to treat muscle functional decrements associated with elevated 

oxidative stress in aged individuals or in conditions of muscle loss such as prolonged 
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bedrest, presumably through a pharmacological pre-conditioning effect resulting in an 

improved redox status associated with these conditions. 
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TABLE LEGENDS 

 

Table 1 Descriptive Data. Animals were weighed prior to sacrifice, body weights 

(BW) are represented in grams (g). Gastrocnemius and plantaris muscles 

were dissected, immediately blotted and weighed as an estimate of 

muscle size. The data are presented in grams (g), or as a ratio to the 

animal’s body weight (mg/g). Food consumption was assessed for each 

experimental group and is reported as g of food per day. Resveratrol was 

fed to aged mice for 10 months in a rodent chow that contained 0.05% 

trans-resveratrol. Resveratrol intake is reported as grams per day 

normalized to kg of bodyweight (g/kg/day). Significance was set at (p ≤ 

0.05) and all data are represented as mean ± standard error.  # denotes 

significantly different than young animals (Aging Effect).  
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FIGURE LEGENDS 

 

Figure 1  Silent mating type information regulation homolog1 (Sirt1) enzyme 

activity and protein content. (A) Sirt1 protein content was measured via 

immunoblotting in total gastrocnemius muscle homogenate (B) Sirt1 

enzyme activity was determined fluorometrically in gastrocnemius muscle 

homogenate. Data are expressed as arbitrary fluorescent units (AFU)/µg 

protein. YC= Young Control, MAC = Middle-Aged Control, AC = Aged 

Control, AR = Aged Resveratrol. Significance was set at (p ≤ 0.05) and 

all data are presented as mean ± standard error. # p ≤ 0.05, young control 

(Aging Effect). * p ≤ 0.05, aged control vs. age resveratrol 

(Supplementation Effect). 

 

Figure 2 PGC1 protein content and citrate synthase enzyme activity (A) PGC1 

protein content was measured via immunoblotting in gastrocnemius 

muscle homogenate (B) Citrate synthase enzyme activity was measured 

kinetically in homogenates from gastrocnemius muscles. Data are 

expressed as µmol/min/mg protein. YC= Young Control, MAC = Middle-

Aged Control, AC = Aged Control, AR = Aged Resveratrol. 

Significance was set at (p ≤ 0.05) and all data are represented as mean ± 

standard error. # p ≤ 0.05, young control (Aging Effect). * p ≤ 0.05, aged 

control vs. age resveratrol (Supplementation Effect). 
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Figure 3 Subcellular cytochrome c protein content. (A) Cytochrome c protein 

content was measured, via immunoblotting, in the total, cytosolic 

(mitochondrial-free), and mitochondrial fractions of vastus lateralis 

muscles as an estimation of both mitochondrial content and mitochondrial 

membrane integrity. (B) Immunoblots of the mitochondrial form of SOD 

(MnSOD) and the cytosolic form of SOD (CuZnSOD) to illustrate the purity 

of the tissue fractions. YC= Young Control, MAC = Middle-Aged 

Control, AC = Aged Control, AR = Aged Resveratrol.  Significance was 

set at (p ≤ 0.05) and all data are represented as mean ± standard error.  # 

p ≤ 0.05, young control (Aging Effect). * p ≤ 0.05, aged control vs. age 

resveratrol (Supplementation Effect). 

 

 

Figure 4   Isoform specific superoxide dismutase activity and protein content. 

(A) MnSOD activity was assessed colorimetrically in mitochondria isolated 

from vastus lateralis muscles. Data are expressed as U/mL/mg protein. 

(B) MnSOD protein content was analyzed via immunoblotting in isolated 

mitochondria of vastus lateralis muscles (C) CuZnSOD activity was 

assessed colorimetrically in the mitochondria-free cytosolic fraction from 

vastus lateralis muscles. Data are expressed as U/mL/mg protein.  (D) 

CuZnSOD protein content was analyzed via immunoblotting in the 

mitochondria-free cytosolic fraction of vastus lateralis muscles. YC= 

Young Control, MAC = Middle-Aged Control, AC = Aged Control, AR 
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= Aged Resveratrol. Significance was set at (p ≤ 0.05) and all data are 

represented as mean ± standard error. Significance was set at (p ≤ 0.05) 

and all data are represented as mean ± standard error. # p ≤ 0.05, young 

control (Aging Effect). * p ≤ 0.05, aged control vs. age resveratrol 

(Supplementation Effect). 

 

Figure 5 Resveratrol attenuated increases in hydrogen peroxide (H2O2) 

concentration and lipid peroxidation associated with aging, but did 

not prevent protein carbonyl formation.  (A) H2O2 concentrations were 

determined fluorometrically in gastrocnemius muscle homogenate. Data 

are expressed as µmols/H2O2/µg protein. Significance was set at (p ≤ 

0.05) and all data are represented as mean ± standard error. (B) MDA & 

HAE levels were evaluated as a combined marker of lipid peroxidation and 

expressed in µM[MDA/HAE]/mg protein. (C) Protein carbonyl formation 

was analyzed as a marker of protein oxidation in gastrocnemius muscle 

homogenate. Data are expressed as nmol/mL.  YC= Young Control, 

MAC = Middle-Aged Control, AC = Aged Control, AR = Aged 

Resveratrol. Significance was set at (p ≤ 0.05) and all data are 

represented as mean ± standard error.   # p ≤ 0.05, young control (Aging 

Effect). * p ≤ 0.05, aged control vs. age resveratrol (Supplementation 

Effect). 
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Figure 6 In vitro muscle physiological analyses. Isometric muscle contractile 

properties were examined in the plantaris muscles of control and 

resveratrol-treated mice. (A) Graphical depiction of a force frequency 

curve illustrating the maximal force produced in plantaris muscles at a 

given frequency. Data are presented as the force production at a given 

stimulation frequency relative to maximal force of that muscle. (B) 

Contraction time  (CT)and ½ relaxation time (½ RT) were analyzed to 

determine twitch properties in plantaris muscles. Data are presented as a 

unit of time (ms) (C) The twitch to tetanus ratio (Pt/Po) was assessed in 

plantaris muscles. Data are presented as a ratio of twitch force to maximal 

force.(D) A modified Burke protocol was implemented to asses muscle 

fatigue in plantaris muscles. Data are presented as a measure of fatigue 

index, calculated as a percent change from the first to last contraction 

(120th). MAC = Middle-Aged Control, AC = Aged Control, AR = Aged 

Resveratrol.  Significance was set at (p ≤ 0.05) and all data are 

represented as mean ± standard error. * p ≤ 0.05, aged control vs. age 

resveratrol (Supplementation Effect). 
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Figure 3.3:  
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Figure 3.5: 
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Figure 3.6: 
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Chapter 4: General Discussion and Conclusions: 

 

Overview:   

 The overall goal of this dissertation was to determine the efficacy of resveratrol 

supplementation to ameliorate the detrimental relationship between oxidative stress, 

apoptosis and skeletal muscle atrophy as they pertain to both muscle disuse and aging.  

Furthermore, the included studies sought to elucidate resveratrol’s capacity to 

upregulate silent mating type information regulation homolog1, (Sirt1), and to determine 

if upregulation of Sirt1 by resveratrol would enhance mitochondrial integrity and content. 

Our long-term goal was to determine if supplementation with resveratrol could prove to 

be an effective therapeutic agent to attenuate muscle atrophy associated with chronic 

disuse (hypodynemia and hypokinesia) and also to ascertain if long-term 

supplementation with dietary resveratrol could prove to be an effective countermeasure 

to slow the progression of sarcopenia, the age-associated loss of muscle mass and 

function.  

The central hypothesis of the dissertation was that resveratrol would protect 

skeletal muscle from oxidative stress via upregulation of the endogenous antioxidant 

system and augmentation of mitochondrial membrane integrity. This would result in a 

reduction of both oxidant release and pro-apoptotic protein release from the 

mitochondria, the leading to reduction in oxidative damage and downstream apoptosis, 

with the expected outcome to be an attenuation of muscle atrophy. The rational for the 

project was to shed light on molecular mechanisms of muscle atrophy induced by both 

aging and disuse and to attempt to a possible intervention, via resveratrol 
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supplementation, to help limit increased oxidant exposure and thus an atrophic muscle 

environment.  

Taken as a whole the cumulative results of the dissertation are in agreement with 

the majority of the current literature confirming that increases in oxidative stress occur 

concomitantly with both disuse-mediated skeletal muscle atrophy (chapter 2) and 

sarcopenia (chapter 3). Furthermore, apoptotic signaling in the skeletal muscle 

environment was increased in response to both hindlimb suspension and advanced age 

(chapter 2). The novelty of this dissertation was to evaluate the efficacy of resveratrol 

supplementation to attenuate oxidative stress and thus mitigate downstream mediators 

of muscle atrophy.  

The efficacy of resveratrol to mitigate the effects of skeletal muscle disuse: 

Hindlimb suspension (HLS), which is a model that elicits both hypodynemia and 

hypokinesia in conjunction with unloading of the hindlimb muscles, caused significant 

atrophy of gastrocnemius muscles from both young and aged animals (Figure 2.5). 

Oxidative stress and apoptotic signaling were also elevated in response to HLS in 

muscles from both young and aged animals, although to a greater extent in muscles 

from aged animals. This study yielded mixed results with regard to the efficacy of 

resveratrol administration to ameliorate disuse mediated atrophy. With the exception of 

the upregulation of catalase activity (Figure 2.4) in muscles from young HLS animals, 

resveratrol had no protective, or detrimental, effects on muscles from young animals. In 

aged gastrocnemius muscles, twenty-one days of resveratrol administration was 

effective at reducing both hydrogen peroxide (H2O2)  
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concentrations and oxidative damage in the form of lipid peroxidation (Figure 2.3) in 

muscles exposed to HLS. These reductions in oxidative stress indices coincided with 

the fact that resveratrol enhanced the endogenous anti-oxidant system in the form of 

increases in both MnSOD and catalase protein contents and enzymatic activities 

(Figure 2.2). Although not addressed in chapter 2, increases in MnSOD and catalase 

activity were likely mediated by resveratrols ability to upregulate Sirt1 in gastrocnemius 

muscles from aged animals (Figure 4.1), given that resveratrol has been repeatedly 

shown to upregulate endogenous antioxidant enzymes in a Sirt1-FOXO dependent 

manner (as discussed in Chapter 1).  

 

Figure 4.1- Sirtuin 1 protein content in gastrocnemius muscles. Gastrocnemius muscles from young and 
aged animals exposed to 21 days of resveratrol administration (12.5mg/kg/day) and 14 days of hindlimb suspension. 
YC= Young Control, YS = Young Suspended, OC = Old Control, OS = Old Suspended, YVC = Young Vehicle 
Control, YVCS = Young Vehicle Control Suspended, YRC = Young Resveratrol Control, YRS = Young 
Resveratrol Suspended, OVC = Old Vehicle Control, OVCS = Old Vehicle Control Suspended, ORC = Old 
Resveratrol Control, ORS = Old Resveratrol Suspended. **p ≤ 0.05, non-suspended control vs. suspended 
animals (Suspension effect). # p ≤ 0.05, old vs. young treatment matched (Aging effect). *p ≤ 0.05, vehicle control vs.  
age-matched and treatment matched groups (Effect of resveratrol). 
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Despite reductions in pro-apoptotic signaling and the upregulation of the anti-

apoptotic protein Bcl-2 (Figure 2.5), resveratrol administration was not an effective 

countermeasure to disuse-mediated increases in apoptotic signaling in aged skeletal 

muscle. However, in terms of the functional outcomes the results were quite promising. 

Resveratrol administration was effective in preserving the relative ratio of muscle mass 

to body mass and significantly attenuated the loss of maximal isometric force in aged 

plantarflexor muscles following HLS (Figure 2.5). Similarly to both, indices of oxidative 

stress and apoptosis this protective effect of resveratrol was age dependent and only 

present in aged animals. To the author’s knowledge this is the first study presenting 

data that shows a clear differential effect of resveratrol in skeletal muscle that is 

dependent upon the age of the animal. The overall results of the study indicate that 

resveratrol has the potential to be a therapeutic agent, likely through a pharmacological 

pre-conditioning effect that acts to upregulate the endogenous anti-oxidant enzyme 

system potentiating the system to be able to handle the increased oxidant load that is 

present in acute conditions of muscle wasting.  

Sarcopenia progression in long-term resveratrol supplemented animals.  

Given the fact that acute resveratrol supplementation was effective at reducing 

oxidative stress and preserving relative muscle mass and function in aged skeletal 

muscle following disuse-mediated atrophy, the second study in this dissertation sought 

to ascertain if long-term dietary supplementation with resveratrol would reduce the 

chronic basal levels of oxidative stress that are often found in aged skeletal muscle. My 

hopes were that by reducing oxidative stress over a long period of time, resveratrol 

could potentially slow the progression of sarcopenia. Additionally, in light of the fact that 
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resveratrol was able to upregulate Sirt1 following acute administration (figure 4.1), the 

second study aimed to clarify if upregulation of Sirt1 by resveratrol over prolonged 

periods would affect mitochondrial signaling, as measured by PGC1 signaling which is a 

known target of Sirt1 (as discussed in chapter 1) 

 Muscles from aged (28mo) mice weighed significantly less than muscles from 

either young (6mo), or middle-aged mice (18mo), even when normalized to body weight 

confirming the notion that with advanced age there is a progressive loss of muscle mass 

(Figure 3.1).  Counter to what was hypothesized, long-term (10mo) dietary 

supplementation with resveratrol was unable to attenuate sarcopenia in either 

gastrocnemius or plantaris muscles (Table 3.1). Despite the lack of preservation of 

muscle mass seen in supplemented animals, dietary resveratrol supplementation was 

effective in reducing indices of oxidative stress including reduction of H2O2 levels and 

lipid peroxidation levels (Figure 3.4). In congruence with the effects of resveratrol on 

aged muscle from HLS animals, long-term resveratrol supplementation effectively 

upregulated MnSOD activity and decreased CuZnSOD activity. Presumably these 

results are due to the interplay of increased MnSOD activity effectively reducing H2O2 

concentrations and in turn the reduction in H2O2 levels are likely responsible for the 

reductions in CuZnSOD activity which is known to become upregulated in response to 

oxidant load.  

 Although not addressed in the main body of chapter two, markers of apoptotic 

signaling and DNA fragmentation were assessed in vastus lateralis muscles to 

determine if reductions in oxidative stress would results in a reduction in the 

translocation of the pro-apoptotic Bax to the mitochondrial membrane. As discussed at 
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length in chapter 1, this translocation is initiated by an oxidant-sensitive conformational 

change in the Bax protein that allows Bax to disassociate from the anti-apoptotic protein 

Bcl-2 in the cytoplasm. This leaves Bax free to translocate to the outer-mitochondrial 

membrane and initiate pore formation leading to an eventual loss of mitochondrial 

membrane integrity, the end result being a release of cytochrome c and eventual 

apoptosis. Long-term resveratrol supplementation was not effective in reducing the 

translocation of Bax to the mitochondria, nor was it effective in reducing the total 

cytosolic protein content of Bax (Figure 4.2). Moreover, unlike the results from the acute 

administration of resveratrol, long-term supplementation with resveratrol was unable to 

increase the anti-apoptotic Bcl-2 protein (Figure 4.2) or lower caspase 3 activity (Figure 

4.3).  

 

Figure 4.2- The subcellular localization of Bax and Bcl-2. Vastus lateralis muscles were fractionated into a 
mitochondrial pellet and a mitochondria-free cytosolic fraction for assessment of the subcellular localization of the 
pro-apoptotic Bax protein and the anti-apoptotic Bcl-2 protein. A. Immunblot analysis of Bax protein content. Data are 
expressed as a measure of optical density and a representative ponceau stain is displayed as qualitative assurance 
of equal protein loading. B. Immunblot analysis of Bcl-2 protein content. Data are expressed as a measure of optical 
density and a representative ponceau stain is displayed as qualitative assurance of equal protein loading. YC = 
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young control, MAC = middle-aged control AC = aged control AR = aged resveratrol supplemented. 
Significance was set at (p ≤ 0.05) and all data are presented as mean ± standard error. # p ≤ 0.05, young control 
(Aging Effect).  

 

Figure 4.3- Apoptotic Signaling:  Apoptotic indices were measured in vastus lateralis muscles. A. A fluorescent 
enzyme activity assay was used to assess the activity of the executioner caspase, caspase 3, within vastus lateralis 
muscle homogenate. The data are presented as normalized fluorescent intensity. B. An ELISA quantifying DNA 
fragmentation was implemented to estimate the levels of apoptosis, within vastus lateralis muscles. The results are 
represented as normalized optical density readings and are linearly related to the amount of fragmented DNA present 
in the muscle homogenate. YC = young control, MAC = middle-aged control AC = aged control AR = aged 
resveratrol supplemented. Significance was set at (p ≤ 0.05) and all data are presented as mean ± standard error. 
# p ≤ 0.05, young control (Aging Effect).  

 

Not surprisingly then, there was no attenuation of DNA fragmentation (Figure 

4.3), the hallmark of apoptosis, by long-term resveratrol supplementation. These data 

highlight the differences between acute and long-term exposure to resveratrol and also 

suggest that a perturbation may be necessary (i.e. muscle disuse) in order to observe 

any protective effective that is attributable to resveratrol supplementation. Furthermore, 

the results of the dissertation as whole bring into question the assumed linear 

relationship that is often thought to exist between oxidative stress and apoptosis. It 

seems more likely that the increases in oxidative stress and apoptotic signaling that 

occur with both advanced age and muscle wasting conditions are concomitant 

conditions that although may be correlated are not casual to each other. 
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Sirt1 activity was modestly upregulated following ten months of dietary 

resveratrol supplementation (Figure 3.1). Unfortunately, this augmented Sirt1 activity did 

not translate to increased citrate synthase activity, PGC1 protein content or improved 

mitochondrial membrane integrity. It was hypothesized that through the upregulation of 

Sirt1 and subsequently PGC1, skeletal muscles from supplemented animals would 

display enhanced resistance to muscle fatigue. This hypothesis was rejected since 

plantaris muscles from aged supplemented animals did not show any resistance to 

muscle fatigue (figure 3.6), it should be noted that muscle fatigue was measured ex vivo 

and therefore these data were unable to take into account neuronal, and/or systemic 

factors that can contribute to muscle fatigue. Furthermore, plantaris muscles from 

supplemented animals displayed a rightward shift of their force-frequency curves 

indicative of a faster muscle profile, a direct contrast to what one would expect from a 

muscle that had undergone a metabolic shift to a more oxidative state.  

Although others have shown that resveratrol’s ability to activate Sirt1 leads to a 

PGC1-mediated enhancement of oxidative metabolism, muscle fatigue resistance and 

mitochondrial biogenesis, our results do not corroborate a relationship between Sirt1 

upregulation and PGC1 signaling. This may be due in part to the wide range of 

dosages, treatment durations and modalities of resveratrol administration present in the 

current body of literature.  The results of this dissertation suggest that the capacity of 

resveratrol to protect skeletal muscle from increases in oxidative stress and 

consequently oxidative damage likely resides in resveratrols ability to activate Sirt1 and 

via this upregulation enhance components of the endogenous anti-oxidant system. It 

also would seem that increases in oxidative stress can influence muscle mass and 
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function, but they are not causative factors mediating apoptosis in skeletal muscle. It is 

also possible, given that resveratrol has been shown to be an effective anti-

inflammatory agent, that reductions in inflammation within aged skeletal muscle lessen 

the effects of exogenous stressors and therefore improve the outcomes of muscle 

following atrophy-mediating events. Further work is needed to determine if resveratrol 

has the potential to be an effective therapeutic agent to treat muscle functional 

decrements associated with chronic elevated oxidative stress in aged individuals. 

However, its effectiveness as a pharmacological pre-conditioner in response to acute 

stress seems to be better established and appears to be the result of improving the 

redox status associated with atrophic conditions. 

 

Future directions and recommendations: 

Upcoming studies that seek to further understand of the molecular effects of 

resveratrol on skeletal muscle may be better served to focus on pathways outside of the 

oxidative stress-apoptosis continuum and perhaps investigate in more detail the Sirt1- 

dependent effects that resveratrol can have on stress resistance (i.e. FOXO mediated 

upregulation of MnSOD and Catalase) and mitochondrial signaling. Furthermore, given 

the relative importance of insulin like growth factor (IGF-1) and mammalian target of 

rapamycin (mTOR) signaling with regard to muscle protein synthesis it would also be 

interesting and prudent to evaluate the effects, if any, that resveratrol and Sirt1 signaling 

may have with regard to this metabolic signaling network, given that Sirt1 is a powerful 

modulator of many metabolic pathways including insulin signaling. Although the current 

experimental protocol did not elicit enhanced PGC1 signaling, this is likely due to the 
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dosage and modality of supplementation. Other investigators have shown successful 

augmentation of mitochondrial biogenesis and improved oxidative capacity in skeletal 

muscle from rodents receiving dietary resveratrol supplementation that was prepared in 

a high fat medium. Given that resveratrol, is fat soluble, the lack of increased fat content 

in our dietary model may have prevented maximal absorption of the compound and 

could explain the failure of resveratrol to bring about an increase in PGC1 signaling in 

the current study. Therefore if the chosen route of resveratrol exposure is going to be 

dietary, the chow should be made with a higher fat content. 

To better determine if resveratrol protects against increased oxidative stress by 

both augmenting the antioxidant defense system and enhancing mitochondrial 

biogenesis, more exact measures to quantify mitochondrial function and content should 

be used. Fluorescent activated cell sorting analysis could be employed to more directly 

measure mitochondrial density, size and internal  complexity,  electron transport chain 

respiratory capacity to quantify mitochondrial capacity  and mitochondrial membrane 

potential (ΔΨm)  could be measured by flow cytometry using the ratiometric dye 

5,5’,6,6’-tetrachloro-1,1’,3,3’ tetraethylbenzimidazol carbocyanine iodide (JC-1; 

Molecular Probes, Carlsbad, CA). Additionally, pinpointing the source of ROS from the 

mitochondria could be obtained concomitantly to mitochondrial respiratory 

measurements by using the oxidation-dependent compound, dihydroethidium, to 

measure intracellular levels of O2
●– and ROS in isolated mitochondria by flow cytometry. 

With regard to skeletal muscle form and function it would be both novel and beneficial to 

measure the effects of resveratrol on muscle fiber composition and cross-sectional 

area. To date the literature has only established the effects of resveratrol 
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supplementation on skeletal muscle enzyme composition and muscle wet weight.  

There are also several Sirt1 transgenic models to choose from that may prove to be 

more exact in delineating the exact molecular signaling pathways that Sirt1 targets and 

thus further the understanding of the potential therapeutic role(s) that resveratrol may 

fulfill.  
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